
True Concurrency and Net Unfoldings

Daniil Frumin

December 9, 2013

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 1 / 64

Talk overview

1 Introduction

2 Unfoldings

3 Verification with unfoldings

4 Other developments in the area

5 Beyond unfoldings & conclusion

6 References and bibliography

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 2 / 64

Talk overview

1 Introduction

2 Unfoldings

3 Verification with unfoldings

4 Other developments in the area

5 Beyond unfoldings & conclusion

6 References and bibliography

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 3 / 64

True concurrency?

Q: What is true concurrency?

A: It’s a concurrency that we can’t represent using interleavings.
Q: What is true concurrency semantics?
A: It is semantics that respect true concurrency.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 4 / 64

True concurrency?

Q: What is true concurrency?
A: It’s a concurrency that we can’t represent using interleavings.
Q: What is true concurrency semantics?

A: It is semantics that respect true concurrency.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 4 / 64

True concurrency?

Q: What is true concurrency?
A: It’s a concurrency that we can’t represent using interleavings.
Q: What is true concurrency semantics?
A: It is semantics that respect true concurrency.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 4 / 64

True concurrency semantics (CCS)

a

b

b

a

Figure 1: a.b + b.a

Interleaving world:

a ‖ b ≈ a.b + b.a

Non-interleaving world:

a ‖ b 6≈ a.b + b.a

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 5 / 64

True concurrency semantics (CCS)

Calculus of communicating systems [Milner, 1989, Aceto et al., 2005]

Usual process calculi semantics

P a−→ P ′

P ‖ Q a−→ P ′ ‖ Q

Q a−→ Q ′

P ‖ Q a−→ P ‖ Q ′

Non-interleaving semantics

Additional rule breaks strong bisimulation:
P −→ P ′ Q −→ Q ′

P ‖ Q −→ P ′ ‖ Q ′

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 6 / 64

Issues that programmers/users are facing

Problems that arise in (true) concurrent environments

Race conditions
Bad interleavings
Data races

Real-world example
“Multicore CPUs move attack from theoretical to practical” by Peter Bright
http://arstechnica.com/security/2010/05/
multicore-cpus-move-attack-from-theoretical-to-practical/

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 7 / 64

http://arstechnica.com/security/2010/05/multicore-cpus-move-attack-from-theoretical-to-practical/
http://arstechnica.com/security/2010/05/multicore-cpus-move-attack-from-theoretical-to-practical/

Topics in true concurrency

True concurrency semantics of process algebras
Axiomatic concurrency theory
Trace theory
Simulation relations in the presence of true concurrency
Logics for true concurrency
Unfoldings theory
Partial order model checking

“A False History of True Concurrency” [Esparza, 2010]

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 8 / 64

Topics in true concurrency

True concurrency semantics of process algebras
Axiomatic concurrency theory
Trace theory
Simulation relations in the presence of true concurrency
Logics for true concurrency
Unfoldings theory
Partial order model checking

“A False History of True Concurrency” [Esparza, 2010]

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 8 / 64

Talk overview

1 Introduction

2 Unfoldings

3 Verification with unfoldings

4 Other developments in the area

5 Beyond unfoldings & conclusion

6 References and bibliography

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 9 / 64

Net unfoldings

Net unfoldings is a popular true concurrency semantics for many
computational models.
Original development due to [Nielsen et al., 1981] (the term used: “event
structures”). The authors also established a connection between true
concurrency semantics for Petri nets and Scott’s domain theory.
More information on event structures, domain theory and relations to other
models of concurrency: [Winskel and Nielsen, 1993].

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 10 / 64

Unfolding a transition system

We can “unfold” a finite state machine into a computational tree.

q0start

q1q2

q3

Figure 2: State machine SM1

q0start

q1q2

q3 q3

q0 q0

.

Figure 3: Unfoldings of the state
machine SM1

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 11 / 64

Unfolding a Petri net

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6

t7

Figure 4: P/T net N1

p1

p2

p3

p4

p5

p6

p7

p7

p1

p1

t1

t1

. . .

. . .

t1

t2

t3

t4

t5

t6

t7

t7

Figure 5: Unfoldings of the net N1

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 12 / 64

Occurrence nets (relations on nodes)

Let N = (P,T ,F) be a Petri net. We call the set P ∪ T the set of nodes.
Abusing the notation we will write x ∈ N to denote x ∈ P ∪ T .

< – the causal relation: irreflexive transitive closure of F ;

– the conflict relation:
x#y ⇐⇒ ∃t, t ′ ∈ E .t 6= t ′, pre(t) ∩ pre(t ′) 6= ∅ ∧ t ≤ x ∧ t ′ ≤ y ;

co – the concurrency relation: x co y ⇐⇒ ¬(x < y) ∧ ¬(y < x) ∧ ¬(x#y).

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 13 / 64

Relations on nodes: causality

Figure 6: Causally dependent nodes

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 14 / 64

Relations on nodes: conflict

Figure 7: Nodes in conflict

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 15 / 64

Relations on nodes: concurrency

Figure 8: Concurrent nodes

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 16 / 64

Occurrence nets (definition)

Occurrence net N = (B,E ,F) (B – conditions, E – events)

N is acyclic;
∀p ∈ B, |pre(p)| ≤ 1;
∀x ∈ N the set {x ′|x ′ < x} is finite (it is said that every node has a
finite number of predecessors);
∀x ∈ N,¬(x#x), e.g. no node is in self-conflict.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 17 / 64

Occurrence nets (properties of relations)

Some properties of the mentioned relations1:

3 relations “cover” the whole net
Each to nodes are either concurrent, xor causally dependend, xor in conflict.

General properties
≤ is a (partial) order;
and co are symmetric;
“plays well” with <: if x#y and x ≤ x ′ ∧ y ≤ y ′ then x ′#y ′.

1Some formalized proofs can be found at
http://me.hskll.org/repos/coq/OccurrNet.html

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 18 / 64

http://me.hskll.org/repos/coq/OccurrNet.html

Net morphisms

Let N1 = (B,E , pre1, post1),N2 = (P,T , pre2, post2) be Petri nets.
h : N1 → N2 is called a net morphism iff

1 h(B) ⊆ P , h(E) ⊆ T ;
2 For each e ∈ E : h(pre1(e)) = pre2(h(e)) and

h(post1(e)) = post2(h(e)).

Additionally, for nets with initial markings (sometimes referred to as net
systems) we require that h preserves initial markings.
It is possible to check that this definition is “sound” (composition of two
morphisms is a morpishm; nets with morphisms form a category Petri).

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 19 / 64

Branching processes (definition)

A branching process (originally due to [Engelfriet, 1991]) for a net N is a
tuple BP = (O, h) where

1 O = (B,E , pre, post) – occurrence net;
2 h : O → N – net morphism;
3 Additionally for an initial marking MI of N we identify a set of

starter/initial conditions of I ⊆ B s.t. I is an initial marking of O
(consequently h(I) = MI) and I is the set of causally minimal, i.e.
∀s ∈ I . |pre(s)| = 0;

4 For all e, e ′ ∈ E if pre(e) = pre(e ′) and h(e) = h(e ′) then e = e ′.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 20 / 64

Branching processes (inductive definition)

Alternatively, we can give a constructive definition2.
A set of branching processes (for a net N) is the smallest set satisfying the
following conditions:

1 Let I = {ip | p ∈ M0}, h(ip) = p. ((I , ∅, ∅), h) is a branching process;
(induction base, a net with only a handful of conditions and no events)

2 Let BP = ((B,E ,F), h) be a branching process. Let t be a new*
transition of N, s.t. for some P ⊆ B , h(P) = pre(t). Then
BP ′ = ((B ′,E ′,F ′), h′) is a branching process, where

E ′ = E ∪ {et}
B ′ = B ∪ {bp | p ∈ post(t)} (where each of bp is “fresh”)
h′ is an extension of h, s.t. h(et) = t, h(bp) = p

*new meaning that there are no events in BP that satisfy pre(e) = P. This
is also called a redundancy rule, same as item 4 in the previous definition.

3 Let S be a (finite or infinite) set of branching processes. Then
⋃

S is a
branching process if all branching processes in S can be composed in “good”
way (e.g. union of two does no introduce redundancies, initial conditions
coincide).

2Slightly modified version of what is presented in
[Esparza and Heljanko, 2008].Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 21 / 64

Examples

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6

t7

Figure 9: P/T net N1

p1

p2

p3

p5t1 t3

Figure 10: Branching process BP1 for
the net N1

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 22 / 64

Examples

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6

t7

Figure 11: P/T net N1

p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

Figure 12: Branching process BP2 for
the net N1

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 23 / 64

Examples

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6

t7

Figure 13: P/T net N1

p1

p2

p3

p4

p5

p6

p7

p7

t1

t2

t3

t4

t5

t6

t7

t7

Figure 14: Branching process BP3 for
the net N1

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 24 / 64

Net unfolding (definition)

Branching processes are subject to prefix relation: A v B if there is an
injective homomorphism from A to B (we can view it as if A is a
prefix/subnet of B up to isomorphism3). A v-maximal4 branching process
is called an unfolding of a net and denoted as U(N).

3Intuitively, “up to renaming”
4Existence guaranteed by Zorn’s lemma

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 25 / 64

Net unfoldings (uniqueness)

Theorem
Net unfoldings are unique (up to isomoprhism).

Proof sketch.
It can be shown that branching processes form a complete lattice wrt to v
by picking up a canonical representation of branching processes for a
particular net. In that setting v coincides with ⊆ and union of a family of
branching processes in a canonical representation is itself a branching
process in a canonical representation. The upper bound of a set of
branching processes Bs = {Si | i ∈ Ind} then is simply

⋃
Bs. See

[Engelfriet, 1991] for more details.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 26 / 64

Net unfoldings (fundamental property)

Theorem (Fundamental property of unfoldings)
Let N be a P/T-net, let M be a reachable marking of U(N), s.t.
h(M) = µ then

1 If M a−→ M ′ in U(N), then µ
h(a)−−→ h(M ′) in N;

2 If µ t−→ µ′ in N, then M a−→ M ′ in N where h(M ′) = µ′ and h(a) = t.

Intuitively, this means that unfolding posses the same behavioral properties
that original net has.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 27 / 64

Net unfoldings (fundamental property)

Proof sketch.
The theorem can be proved using induction on the length of the fireable
sequence σ.

1 In case of σ = ε – obvious
2 In case of σ = σ′t we have (by the induction hypothesis) µ0[σ′〉µ1,

M0[ψ〉M1, h(ψ) = σ′ ∧ h(M1) = µ1. Since t is active
pre(t) ⊆ µ1 =⇒ pre(t) ⊆ h(M1). Then pre(t) = h(M ′

1) for some
M ′

1 ⊆ M1. Then U(N) contains an event e s.t. pre(e) = M ′
1 and

h(e) = t. If it wasn’t the case, than U(N) wouldn’t be the maximal
branching process.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 28 / 64

Talk overview

1 Introduction

2 Unfoldings

3 Verification with unfoldings

4 Other developments in the area

5 Beyond unfoldings & conclusion

6 References and bibliography

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 29 / 64

Finite prefixes: battling the state space explosion problem

Figure 15: State space explosion, common in highly concurrent systems

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 30 / 64

Verification with finite prefixes

We can use finite prefixes of unfoldings to solve a number of verification
problems

Reachability
Coverability
Fireability of a transition
Deadlock freedom
Mutex
Etc

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 31 / 64

Preliminaries: configurations and cuts

Definition
A configuration of a branching process is a set C ⊆ E s.t. for all e ∈ C

∀e ′ < e . e ′ ∈ C , i.e. C is downwards closed w.r.t. <;
∀e ′ ∈ C .¬(e ′#e), i.e. C is conflict-free.

For each event e we can define a local configuration
Conf (e) = {e ′ | e ′ ≤ e}

Definition
A set B ′ is called a cut if it’s a maximal (w.r.t ⊆) set of conditions that
satisfies ∀x , y ∈ B ′ . x co y .

Cuts characterizes reachable markings;
Each configuration induces a cut: Cut(C) = (Min ∪ post(C)) \ pre(C)
, where Min is the set of <-minimal nodes of a branching process (i.e. the
initial marking, starting nodes, h(M0)).

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 32 / 64

Preliminaries: configurations and cuts

Definition
A configuration of a branching process is a set C ⊆ E s.t. for all e ∈ C

∀e ′ < e . e ′ ∈ C , i.e. C is downwards closed w.r.t. <;
∀e ′ ∈ C .¬(e ′#e), i.e. C is conflict-free.

For each event e we can define a local configuration
Conf (e) = {e ′ | e ′ ≤ e}

Definition
A set B ′ is called a cut if it’s a maximal (w.r.t ⊆) set of conditions that
satisfies ∀x , y ∈ B ′ . x co y .

Cuts characterizes reachable markings;
Each configuration induces a cut: Cut(C) = (Min ∪ post(C)) \ pre(C)
, where Min is the set of <-minimal nodes of a branching process (i.e. the
initial marking, starting nodes, h(M0)).

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 32 / 64

Marking-complete finite prefixes

A prefix of the unfolding of a net N is said to be marking-complete if for
every reachable marking M of N there exists a configuration C , s.t.
h(Cut(C)) = M.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 33 / 64

Constructing finite prefixes, McMillan algorithm

Constructing a finite prefix for the net N (originally by [McMillan, 1993]).

1 Start with an net U, that contains only the initial marking of N and an
empty set of terminal events T .

2 Create a queue Q that contains possible extensions of U, i.e. events e such
that pre(e) is already in U and elements of pre(e) are pairwise concurrent.

3 Grab an element t from the queue, prioritized by the size of the local
configuration. Add t and post(t) to the branching process U. If t is a
cut-off point, then add t to the set T of terminal events/cut-off nodes.

4 Generate more possible extensions, ignoring nodes x s.t. ∃t ∈ T .t < x . Add
possible extensions to the queue.

5 Repeat while Q is non-empty.

Node e is called a cut-off point iff there is another event e′ such that
h(Cut(e′)) = h(Cut(e)) (i.e. they transition to the same markings) and
|Cut(e′)| < |Cut(e)|.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 34 / 64

Checking for properties (deadlock)

A net N contains a deadlock5 iff U(N) has a deadlock;
U(N) contains a deadlock iff a marking-complete prefix of U(N)
contains a configuration from which it is impossible to reach a
configuration, containing a cut-off point;
i.e. if there is a configuration which is in conflict with every cut-off
node in the prefix.

5N has a reachable marking M such that no transition can be fired
Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 35 / 64

Checking for deadlock with SAT-solvers

We can produce the formula ψ that corresponds to the configurations of a
(complete) prefix BP .
Each satisfactory assignment of ψ determines a valid configuration in BP .

Variable e is true iff the event e has occurred in BP . ψ consists of
formulae ψe for each event e:

ψe =
∧

f ∈pre(pre(e))

(e =⇒ f) ∧
∧
f #e

(¬e ∨ ¬f) ∧
∧

e is a cut-off event
(¬e)

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 36 / 64

Checking for deadlock with SAT-solvers

We can produce the formula ψ that corresponds to the configurations of a
(complete) prefix BP .
Each satisfactory assignment of ψ determines a valid configuration in BP .
Variable e is true iff the event e has occurred in BP . ψ consists of
formulae ψe for each event e:

ψe =
∧

f ∈pre(pre(e))

(e =⇒ f) ∧
∧
f #e

(¬e ∨ ¬f) ∧
∧

e is a cut-off event
(¬e)

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 36 / 64

Checking for deadlock with SAT-solvers

ψe =
∧

f ∈pre(pre(e))

(e =⇒ f) ∧
∧
f #e

(¬e ∨ ¬f) ∧
∧

e is a cut-off event
(¬e)

f

e

Figure 16: e =⇒ f

f

e

Figure 17: ¬e ∨ ¬f

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 37 / 64

Checking for deadlock with SAT-solvers

A place p is marked (where e ′ = pre(p)):

marked(p) = (
∧

e∈post(p)

¬e) ∧ e ′

We can construct a formula enables(t) for each transition t in the original
net that is true iff the configuration enables a transition labeled with t.

enables(t) =
∧

p∈pre(t)

∨
h(b)=p

marked(b)

Finally, we can construct a formula that is satisfiable iff there is no
deadlock in the net

ψ =⇒ (enables(a) ∨ · · · ∨ enables(z))

where {a, . . . , z} is the set of transitions of the net N.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 38 / 64

Checking for deadlock with SAT-solvers

A place p is marked (where e ′ = pre(p)):

marked(p) = (
∧

e∈post(p)

¬e) ∧ e ′

We can construct a formula enables(t) for each transition t in the original
net that is true iff the configuration enables a transition labeled with t.

enables(t) =
∧

p∈pre(t)

∨
h(b)=p

marked(b)

Finally, we can construct a formula that is satisfiable iff there is no
deadlock in the net

ψ =⇒ (enables(a) ∨ · · · ∨ enables(z))

where {a, . . . , z} is the set of transitions of the net N.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 38 / 64

Sidenote: complexity issues I

The problem of generating possible extensions of a branching process is
NP-complete (can be proved via reduction from SAT)
[Esparza and Heljanko, 2008, Heljanko, 1999].

Figure 18: Synchronized product for (a) variable x1 (b) literal x1 in clause x1 ∨ x2
(c) clause x1 ∨ x2 in formula (x1 ∨ x2) ∧ x1; taken from from
[Esparza and Heljanko, 2008]

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 39 / 64

Sidenote: complexity issues II

Deadlock checking is NP-complete (in the size of the prefix;
[McMillan, 1995], also see previous case), marking reachability using finite
prefixes is also NP-complete.
Model checking is PSPACE-complete. [Heljanko, 2000]

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 40 / 64

Generalization: room for improvement

It has been noted that McMillan’s algorithm can generate prefixes bigger
than needed.

a b

c d

. . .

e f

Figure 19: Net N2

a b

c d c d

.

Figure 20: Finite prefix of N2
according to the McMillan’s algorithm

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 41 / 64

Generalization: room for improvement

It has been noted that McMillan’s algorithm can generate prefixes bigger
than needed.

a b

c d

. . .

e f

Figure 19: Net N2

a b

c d c d

.

Figure 20: Finite prefix of N2
according to the McMillan’s algorithm

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 41 / 64

Generalization: adequate orders I

Cut-Off criterion and adequate orders are used to abstract the way we
handle terminal/cut-off events.

Definition (Cut-off event)
We define Mark(C) = h(Cut(C)).
Event e is called a cut-off event iff there is a configuration C already
present in a branching process, such that Mark(C) = Mark([e]) and
C ≺ [e], where ≺ is an adequate order.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 42 / 64

Generalization: adequate orders II

Definition (Adequate order)
A partial order ≺ on the set of configurations of an unfolding is called
adequate [Esparza et al., 1996] iff

≺ is well-founded (i.e. for each set of configurations there exists a
≺-minimal one);
≺ refines set inclusion: C (C ′ =⇒ C ≺ C ′;
≺ is preserved by finite extensions: if Mark(C) = Mark(C ′) and
C ≺ C ′ then C ⊕ E ≺ C ⊕ I (E) where E is a suffix of C , ⊕ is a net
concatenation operator, and I (E) is an image of E under “natural”
isomorphism.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 43 / 64

Old algorithm

Constructing a finite prefix for the net N.
1 Start with an net U, that contains only the initial marking of N and

an empty set of terminal events T .
2 Create a queue Q that contains possible extensions of U, i.e. events e

such that pre(e) is already in U and elements of pre(e) are pairwise
concurrent.

3 Grab an element t from the queue, prioritized by the size of the local
configuration. Add t and post(t) to the branching process U. If t is a
cut-off point, then add t to the set T of terminal events/cut-off nodes.

4 Generate more possible extensions, ignoring nodes x s.t.
∃t ∈ T .t < x . Add possible extensions to the queue.

5 Repeat while Q is non-empty.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 44 / 64

New algorithm

Constructing a finite prefix for the net N.
1 Start with an net U, that contains only the initial marking of N and

an empty set of terminal events T .
2 Create a queue Q that contains possible extensions of U, i.e. events e

such that pre(e) is already in U and elements of pre(e) are pairwise
concurrent.

3 Grab an element t from the queue, prioritized by the relation on
events induced by ≺, i.e. choose e over e ′ if [e] ≺ [e ′]. Add t and
post(t) to the branching process U. If t is a cut-off point according to
≺, then add t to the set T of terminal events/cut-off nodes.

4 Generate more possible extensions, ignoring nodes x s.t.
∃t ∈ T .t < x . Add possible extensions to the queue.

5 Repeat while Q is non-empty.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 45 / 64

The completeness of the algorithm

The algorithm is correct in the sense that for every adequate order ≺ it
produces a marking-complete prefix.
Good explanation is presented in [Esparza and Heljanko, 2008].

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 46 / 64

Examples of adequate orders

McMillan’s original order: C ≺ C ′ ⇐⇒ |C | < |C ′|
ERV order: Defined as following. Let <lex be a lexicographical order
on set of sequences of transitions; we can “lift” <lex to the set of
configurations by declaring C <lex C ′ iff flat(C) <lex flat(C) where
flat(C) is a sequence of transitions ordered by <lex and contains
transition t as often as there are events in C labeled with t.
C ≺ C ′ iff

|C | < |C ′|;
or if |C | = |C ′| and C <lex C ′;
or if |C | = |C ′|, flat(C) = flat(C ′), and

Min(C) <lex Min(C ′);
or flat(Min(C)) <lex flat(Min(C ′)) and C \Min(C) ≺ C \Min(C ′)

Min(C) – the set of minimal (wrt the causal ordering) nodes of C .

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 47 / 64

Examples of adequate orders

McMillan’s original order: C ≺ C ′ ⇐⇒ |C | < |C ′|
Is not a total order.
ERV order: Defined as following. Let <lex be a lexicographical order
on set of sequences of transitions; we can “lift” <lex to the set of
configurations by declaring C <lex C ′ iff flat(C) <lex flat(C) where
flat(C) is a sequence of transitions ordered by <lex and contains
transition t as often as there are events in C labeled with t.
C ≺ C ′ iff

|C | < |C ′|;
or if |C | = |C ′| and C <lex C ′;
or if |C | = |C ′|, flat(C) = flat(C ′), and

Min(C) <lex Min(C ′);
or flat(Min(C)) <lex flat(Min(C ′)) and C \Min(C) ≺ C \Min(C ′)

Min(C) – the set of minimal (wrt the causal ordering) nodes of C .
Is a total order for 1-safe nets [Esparza et al., 1996].

Total orders are good, allow us to have more cut-off events.
Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 47 / 64

Talk overview

1 Introduction

2 Unfoldings

3 Verification with unfoldings

4 Other developments in the area

5 Beyond unfoldings & conclusion

6 References and bibliography

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 48 / 64

Infinite excecutability problem

Many problems can be solved using the complete finite prefixes that were
presented

Reachability
Coverability
Fireability of a transition
Deadlock freedom
Mutex
Etc

Some problems still can not be solved using such prefix.
Infinite excecutability problem?

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 49 / 64

Infinite excecutability problem

Many problems can be solved using the complete finite prefixes that were
presented

Reachability
Coverability
Fireability of a transition
Deadlock freedom
Mutex
Etc

Some problems still can not be solved using such prefix.
Infinite excecutability problem?

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 49 / 64

Cut-off criterion for infinite executability problem

Let #r (C) denote the number of events from C labeled by transition r .

Definition (Cut-off criterion for repeated executability problem)
Event e is considered to be terminal iff there exists an event e ′ ≺ e such
that Mark([e ′]) = Mark([e]) and either

1 e ′ < e or
2 #r ([e ′]) ≥ #r ([e]).

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 50 / 64

Model checking using unfoldings

Arbitrary properties (expressed in LTL) can be checked using unfoldings:
[Couvreur et al., 2000, Esparza and Heljanko, 2001].

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 51 / 64

More generalizations

Cutting contex [Khomenko, 2003] is a generalization that allows us to
preserve only the properties we want when constructing a finite prefix.

Θ = (≈,≺, {Ce}e∈E)

1 ≺ – adequate order;
2 {Ce}e∈E – family of (finite) configurations of the unfolding (usually

only local configurations);
3 ≈ – equivalence relation on the set of finite configurations of the

unfolding.
4 ≈ and ≺ preserves finite extensions.

An event is cut-off iff there exists a configuration C ∈ Ce s.t. C ≺ [e] and
C ≈ [e].
In usual setting: C ≈ C ′ ⇐⇒ Mark(C) ≈ Mark(C ′)

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 52 / 64

Talk overview

1 Introduction

2 Unfoldings

3 Verification with unfoldings

4 Other developments in the area

5 Beyond unfoldings & conclusion

6 References and bibliography

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 53 / 64

More topics in true concurrency I

True concurrency semantics of process algebras
Complete finite prefixes for a model similar to branching processes +
adequate order on calculus formulae: [Langerak and Brinksma, 1999].
Summary of older work: [Boudol et al., 2008].

Axiomatic concurrency theory
Project started by Carl Petri himself.
http://www.informatik.uni-hamburg.de/TGI/forschung/
projekte/concurrency_eng.html

Trace theory
Mazurkiewicz traces – another formalism for true concurrency
semantics.
LTrL [Thiagarajan and Walukiewicz, 2002] is a logic for
communicating multi-agent systems. LTrL is to Mazurkiewicz
traces/event structures as LTL is for computational trees.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 54 / 64

http://www.informatik.uni-hamburg.de/TGI/forschung/projekte/concurrency_eng.html
http://www.informatik.uni-hamburg.de/TGI/forschung/projekte/concurrency_eng.html

More topics in true concurrency II

Theorem (Kamp’s theorem)
LTL is equivalent to the first-order theory of (infinite) sequences

Theorem
LTrL is equivalent to the first-order theory of traces

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 55 / 64

Topic in true concurrency: relations

Figure 21: Illustration from “A logic for true concurrency” by Silvia Crafa

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 56 / 64

The end

Thank you for listening!
Any questions?

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 57 / 64

Talk overview

1 Introduction

2 Unfoldings

3 Verification with unfoldings

4 Other developments in the area

5 Beyond unfoldings & conclusion

6 References and bibliography

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 58 / 64

References I

Aceto, L., Larsen, K. G., and Ingolfsdottir, A. (2005).
An introduction to Milner’s CCS.
http://www.cs.auc.dk/~luca/SV/intro2ccs.pdf.

Boudol, G., Castellani, I., Hennessy, M., Nielsen, M., and Winskel, G.
(2008).
Twenty years on: Reflections on the CEDISYS project. combining true
concurrency with process algebra.
In Degano, P., Nicola, R., and Meseguer, J., editors, Concurrency,
Graphs and Models, volume 5065 of Lecture Notes in Computer
Science, pages 757–777. Springer Berlin Heidelberg.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 59 / 64

http://www.cs.auc.dk/~luca/SV/intro2ccs.pdf

References II

Couvreur, J.-M., Grivet, S., and Poitrenaud, D. (2000).
Designing a LTL model-checker based on unfolding graphs.
In Nielsen, M. and Simpson, D., editors, Application and Theory of
Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science,
pages 123–145. Springer Berlin Heidelberg.

Engelfriet, J. (1991).
Branching processes of Petri nets.
Acta Inf., 28(6):575–591.

Esparza, J. (2010).
A false history of true concurrency: From Petri to tools.
In Proceedings of the 17th International SPIN Conference on Model
Checking Software, SPIN’10, pages 180–186, Berlin, Heidelberg.
Springer-Verlag.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 60 / 64

References III

Esparza, J. and Heljanko, K. (2001).
Implementing LTL model checking with net unfoldings.
In Proceedings of the 8th International SPIN Workshop on Model
Checking of Software, SPIN ’01, pages 37–56, New York, NY, USA.
Springer-Verlag New York, Inc.

Esparza, J. and Heljanko, K. (2008).
Unfoldings: a partial-order approach to model checking.
Springer.

Esparza, J., Römer, S., and Vogler, W. (1996).
An improvement of McMillan’s unfolding algorithm.
In Margaria, T. and Steffen, B., editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1055 of Lecture Notes
in Computer Science, pages 87–106. Springer Berlin Heidelberg.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 61 / 64

References IV

Heljanko, K. (1999).
Deadlock and reachability checking with finite complete prefixes.
Technical report, Helsinki University of Technology, Laboratory for
Theoretical Computer Science.

Heljanko, K. (2000).
Model checking with finite complete prefixes is PSPACE-complete.
In Proceedings of the 11th International Conference on Concurrency
Theory, CONCUR ’00, pages 108–122, London, UK, UK.
Springer-Verlag.

Khomenko, V. (2003).
Model Checking Based on Prefixes of Petri Net Unfoldings.
Ph.D. Thesis, School of Computing Science, Newcastle University.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 62 / 64

References V

Langerak, R. and Brinksma, E. (1999).
A complete finite prefix for process algebra.
In Halbwachs, N. and Peled, D., editors, Computer Aided Verification,
volume 1633 of Lecture Notes in Computer Science, pages 184–195.
Springer Berlin Heidelberg.

McMillan, K. L. (1993).
Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits.
In Computer Aided Verification, pages 164–177. Springer.

McMillan, K. L. (1995).
A technique of state space search based on unfolding.
Form. Methods Syst. Des., 6(1):45–65.

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 63 / 64

References VI

Milner, R. (1989).
Communication and concurrency.
PHI Series in computer science. Prentice Hall.

Nielsen, M., Plotkin, G., and Winskel, G. (1981).
Petri nets, event structures and domains, part I.
Theoretical Computer Science, 13(1):85–108.

Thiagarajan, P. S. and Walukiewicz, I. (2002).
An expressively complete linear time temporal logic for Mazurkiewiczr
traces.
Information and Computation, 179(2):230–249.

Winskel, G. and Nielsen, M. (1993).
Models for concurrency.
DAIMI Report Series, 22(463).

Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 64 / 64

	Introduction
	Unfoldings
	Verification with unfoldings
	Other developments in the area
	Beyond unfoldings & conclusion
	References and bibliography

