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True concurrency?

Q: What is true concurrency?

A: It’s a concurrency that we can’t represent using interleavings.
Q: What is true concurrency semantics?
A: It is semantics that respect true concurrency.
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True concurrency semantics (CCS)

a

b

b

a

Figure 1: a.b + b.a

Interleaving world:

a ‖ b ≈ a.b + b.a

Non-interleaving world:

a ‖ b 6≈ a.b + b.a
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True concurrency semantics (CCS)

Calculus of communicating systems [Milner, 1989, Aceto et al., 2005]

Usual process calculi semantics

P a−→ P ′

P ‖ Q a−→ P ′ ‖ Q

Q a−→ Q ′

P ‖ Q a−→ P ‖ Q ′

Non-interleaving semantics

Additional rule breaks strong bisimulation:
P −→ P ′ Q −→ Q ′

P ‖ Q −→ P ′ ‖ Q ′
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Issues that programmers/users are facing

Problems that arise in (true) concurrent environments

Race conditions
Bad interleavings
Data races

Real-world example
“Multicore CPUs move attack from theoretical to practical” by Peter Bright
http://arstechnica.com/security/2010/05/
multicore-cpus-move-attack-from-theoretical-to-practical/
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Topics in true concurrency

True concurrency semantics of process algebras
Axiomatic concurrency theory
Trace theory
Simulation relations in the presence of true concurrency
Logics for true concurrency
Unfoldings theory
Partial order model checking

“A False History of True Concurrency” [Esparza, 2010]
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Net unfoldings

Net unfoldings is a popular true concurrency semantics for many
computational models.
Original development due to [Nielsen et al., 1981] (the term used: “event
structures”). The authors also established a connection between true
concurrency semantics for Petri nets and Scott’s domain theory.
More information on event structures, domain theory and relations to other
models of concurrency: [Winskel and Nielsen, 1993].
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Unfolding a transition system

We can “unfold” a finite state machine into a computational tree.

q0start

q1q2

q3

Figure 2: State machine SM1

q0start

q1q2

q3 q3

q0 q0

. . . . . .

Figure 3: Unfoldings of the state
machine SM1
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Unfolding a Petri net

p1

p2
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Figure 4: P/T net N1
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Figure 5: Unfoldings of the net N1
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Occurrence nets (relations on nodes)

Let N = (P,T ,F ) be a Petri net. We call the set P ∪ T the set of nodes.
Abusing the notation we will write x ∈ N to denote x ∈ P ∪ T .

< – the causal relation: irreflexive transitive closure of F ;

# – the conflict relation:
x#y ⇐⇒ ∃t, t ′ ∈ E .t 6= t ′, pre(t) ∩ pre(t ′) 6= ∅ ∧ t ≤ x ∧ t ′ ≤ y ;

co – the concurrency relation: x co y ⇐⇒ ¬(x < y) ∧ ¬(y < x) ∧ ¬(x#y).
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Relations on nodes: causality

Figure 6: Causally dependent nodes
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Relations on nodes: conflict

Figure 7: Nodes in conflict
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Relations on nodes: concurrency

Figure 8: Concurrent nodes
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Occurrence nets (definition)

Occurrence net N = (B,E ,F ) (B – conditions, E – events)

N is acyclic;
∀p ∈ B, |pre(p)| ≤ 1;
∀x ∈ N the set {x ′|x ′ < x} is finite (it is said that every node has a
finite number of predecessors);
∀x ∈ N,¬(x#x), e.g. no node is in self-conflict.
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Occurrence nets (properties of relations)

Some properties of the mentioned relations1:

3 relations “cover” the whole net
Each to nodes are either concurrent, xor causally dependend, xor in conflict.

General properties
≤ is a (partial) order;
# and co are symmetric;
# “plays well” with <: if x#y and x ≤ x ′ ∧ y ≤ y ′ then x ′#y ′.

1Some formalized proofs can be found at
http://me.hskll.org/repos/coq/OccurrNet.html
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Net morphisms

Let N1 = (B,E , pre1, post1),N2 = (P,T , pre2, post2) be Petri nets.
h : N1 → N2 is called a net morphism iff

1 h(B) ⊆ P , h(E ) ⊆ T ;
2 For each e ∈ E : h(pre1(e)) = pre2(h(e)) and

h(post1(e)) = post2(h(e)).

Additionally, for nets with initial markings (sometimes referred to as net
systems) we require that h preserves initial markings.
It is possible to check that this definition is “sound” (composition of two
morphisms is a morpishm; nets with morphisms form a category Petri).
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Branching processes (definition)

A branching process (originally due to [Engelfriet, 1991]) for a net N is a
tuple BP = (O, h) where

1 O = (B,E , pre, post) – occurrence net;
2 h : O → N – net morphism;
3 Additionally for an initial marking MI of N we identify a set of

starter/initial conditions of I ⊆ B s.t. I is an initial marking of O
(consequently h(I ) = MI ) and I is the set of causally minimal, i.e.
∀s ∈ I . |pre(s)| = 0;

4 For all e, e ′ ∈ E if pre(e) = pre(e ′) and h(e) = h(e ′) then e = e ′.
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Branching processes (inductive definition)

Alternatively, we can give a constructive definition2.
A set of branching processes (for a net N) is the smallest set satisfying the
following conditions:

1 Let I = {ip | p ∈ M0}, h(ip) = p. ((I , ∅, ∅), h) is a branching process;
(induction base, a net with only a handful of conditions and no events)

2 Let BP = ((B,E ,F ), h) be a branching process. Let t be a new*
transition of N, s.t. for some P ⊆ B , h(P) = pre(t). Then
BP ′ = ((B ′,E ′,F ′), h′) is a branching process, where

E ′ = E ∪ {et}
B ′ = B ∪ {bp | p ∈ post(t)} (where each of bp is “fresh”)
h′ is an extension of h, s.t. h(et) = t, h(bp) = p

*new meaning that there are no events in BP that satisfy pre(e) = P. This
is also called a redundancy rule, same as item 4 in the previous definition.

3 Let S be a (finite or infinite) set of branching processes. Then
⋃

S is a
branching process if all branching processes in S can be composed in “good”
way (e.g. union of two does no introduce redundancies, initial conditions
coincide).

2Slightly modified version of what is presented in
[Esparza and Heljanko, 2008].Daniil Frumin True Concurrency and Net Unfoldings December 9, 2013 21 / 64



Examples
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Figure 9: P/T net N1
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Figure 10: Branching process BP1 for
the net N1
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Figure 11: P/T net N1

p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

Figure 12: Branching process BP2 for
the net N1
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Figure 14: Branching process BP3 for
the net N1
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Net unfolding (definition)

Branching processes are subject to prefix relation: A v B if there is an
injective homomorphism from A to B (we can view it as if A is a
prefix/subnet of B up to isomorphism3). A v-maximal4 branching process
is called an unfolding of a net and denoted as U(N).

3Intuitively, “up to renaming”
4Existence guaranteed by Zorn’s lemma
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Net unfoldings (uniqueness)

Theorem
Net unfoldings are unique (up to isomoprhism).

Proof sketch.
It can be shown that branching processes form a complete lattice wrt to v
by picking up a canonical representation of branching processes for a
particular net. In that setting v coincides with ⊆ and union of a family of
branching processes in a canonical representation is itself a branching
process in a canonical representation. The upper bound of a set of
branching processes Bs = {Si | i ∈ Ind} then is simply

⋃
Bs. See

[Engelfriet, 1991] for more details.
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Net unfoldings (fundamental property)

Theorem (Fundamental property of unfoldings)
Let N be a P/T-net, let M be a reachable marking of U(N), s.t.
h(M) = µ then

1 If M a−→ M ′ in U(N), then µ
h(a)−−→ h(M ′) in N;

2 If µ t−→ µ′ in N, then M a−→ M ′ in N where h(M ′) = µ′ and h(a) = t.

Intuitively, this means that unfolding posses the same behavioral properties
that original net has.
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Net unfoldings (fundamental property)

Proof sketch.
The theorem can be proved using induction on the length of the fireable
sequence σ.

1 In case of σ = ε – obvious
2 In case of σ = σ′t we have (by the induction hypothesis) µ0[σ′〉µ1,

M0[ψ〉M1, h(ψ) = σ′ ∧ h(M1) = µ1. Since t is active
pre(t) ⊆ µ1 =⇒ pre(t) ⊆ h(M1). Then pre(t) = h(M ′

1) for some
M ′

1 ⊆ M1. Then U(N) contains an event e s.t. pre(e) = M ′
1 and

h(e) = t. If it wasn’t the case, than U(N) wouldn’t be the maximal
branching process.
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Finite prefixes: battling the state space explosion problem

Figure 15: State space explosion, common in highly concurrent systems
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Verification with finite prefixes

We can use finite prefixes of unfoldings to solve a number of verification
problems

Reachability
Coverability
Fireability of a transition
Deadlock freedom
Mutex
Etc
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Preliminaries: configurations and cuts

Definition
A configuration of a branching process is a set C ⊆ E s.t. for all e ∈ C

∀e ′ < e . e ′ ∈ C , i.e. C is downwards closed w.r.t. <;
∀e ′ ∈ C .¬(e ′#e), i.e. C is conflict-free.

For each event e we can define a local configuration
Conf (e) = {e ′ | e ′ ≤ e}

Definition
A set B ′ is called a cut if it’s a maximal (w.r.t ⊆) set of conditions that
satisfies ∀x , y ∈ B ′ . x co y .

Cuts characterizes reachable markings;
Each configuration induces a cut: Cut(C ) = (Min ∪ post(C )) \ pre(C )
, where Min is the set of <-minimal nodes of a branching process (i.e. the
initial marking, starting nodes, h(M0)).
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Marking-complete finite prefixes

A prefix of the unfolding of a net N is said to be marking-complete if for
every reachable marking M of N there exists a configuration C , s.t.
h(Cut(C )) = M.
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Constructing finite prefixes, McMillan algorithm

Constructing a finite prefix for the net N (originally by [McMillan, 1993]).

1 Start with an net U, that contains only the initial marking of N and an
empty set of terminal events T .

2 Create a queue Q that contains possible extensions of U, i.e. events e such
that pre(e) is already in U and elements of pre(e) are pairwise concurrent.

3 Grab an element t from the queue, prioritized by the size of the local
configuration. Add t and post(t) to the branching process U. If t is a
cut-off point, then add t to the set T of terminal events/cut-off nodes.

4 Generate more possible extensions, ignoring nodes x s.t. ∃t ∈ T .t < x . Add
possible extensions to the queue.

5 Repeat while Q is non-empty.

Node e is called a cut-off point iff there is another event e′ such that
h(Cut(e′)) = h(Cut(e)) (i.e. they transition to the same markings) and
|Cut(e′)| < |Cut(e)|.
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Checking for properties (deadlock)

A net N contains a deadlock5 iff U(N) has a deadlock;
U(N) contains a deadlock iff a marking-complete prefix of U(N)
contains a configuration from which it is impossible to reach a
configuration, containing a cut-off point;
i.e. if there is a configuration which is in conflict with every cut-off
node in the prefix.

5N has a reachable marking M such that no transition can be fired
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Checking for deadlock with SAT-solvers

We can produce the formula ψ that corresponds to the configurations of a
(complete) prefix BP .
Each satisfactory assignment of ψ determines a valid configuration in BP .

Variable e is true iff the event e has occurred in BP . ψ consists of
formulae ψe for each event e:

ψe =
∧

f ∈pre(pre(e))

(e =⇒ f ) ∧
∧
f #e

(¬e ∨ ¬f ) ∧
∧

e is a cut-off event
(¬e)
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Checking for deadlock with SAT-solvers

ψe =
∧

f ∈pre(pre(e))

(e =⇒ f ) ∧
∧
f #e

(¬e ∨ ¬f ) ∧
∧

e is a cut-off event
(¬e)

f

e

Figure 16: e =⇒ f

f

e

Figure 17: ¬e ∨ ¬f
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Checking for deadlock with SAT-solvers

A place p is marked (where e ′ = pre(p)):

marked(p) = (
∧

e∈post(p)

¬e) ∧ e ′

We can construct a formula enables(t) for each transition t in the original
net that is true iff the configuration enables a transition labeled with t.

enables(t) =
∧

p∈pre(t)

∨
h(b)=p

marked(b)

Finally, we can construct a formula that is satisfiable iff there is no
deadlock in the net

ψ =⇒ (enables(a) ∨ · · · ∨ enables(z))

where {a, . . . , z} is the set of transitions of the net N.
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Sidenote: complexity issues I

The problem of generating possible extensions of a branching process is
NP-complete (can be proved via reduction from SAT)
[Esparza and Heljanko, 2008, Heljanko, 1999].

Figure 18: Synchronized product for (a) variable x1 (b) literal x1 in clause x1 ∨ x2
(c) clause x1 ∨ x2 in formula (x1 ∨ x2) ∧ x1; taken from from
[Esparza and Heljanko, 2008]
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Sidenote: complexity issues II

Deadlock checking is NP-complete (in the size of the prefix;
[McMillan, 1995], also see previous case), marking reachability using finite
prefixes is also NP-complete.
Model checking is PSPACE-complete. [Heljanko, 2000]
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Generalization: room for improvement

It has been noted that McMillan’s algorithm can generate prefixes bigger
than needed.

a b

c d

. . .

e f

Figure 19: Net N2

a b

c d c d

. . . . . .. . . . . .

Figure 20: Finite prefix of N2
according to the McMillan’s algorithm
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Generalization: adequate orders I

Cut-Off criterion and adequate orders are used to abstract the way we
handle terminal/cut-off events.

Definition (Cut-off event)
We define Mark(C ) = h(Cut(C )).
Event e is called a cut-off event iff there is a configuration C already
present in a branching process, such that Mark(C ) = Mark([e]) and
C ≺ [e], where ≺ is an adequate order.
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Generalization: adequate orders II

Definition (Adequate order)
A partial order ≺ on the set of configurations of an unfolding is called
adequate [Esparza et al., 1996] iff

≺ is well-founded (i.e. for each set of configurations there exists a
≺-minimal one);
≺ refines set inclusion: C ( C ′ =⇒ C ≺ C ′;
≺ is preserved by finite extensions: if Mark(C ) = Mark(C ′) and
C ≺ C ′ then C ⊕ E ≺ C ⊕ I (E ) where E is a suffix of C , ⊕ is a net
concatenation operator, and I (E ) is an image of E under “natural”
isomorphism.
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Old algorithm

Constructing a finite prefix for the net N.
1 Start with an net U, that contains only the initial marking of N and

an empty set of terminal events T .
2 Create a queue Q that contains possible extensions of U, i.e. events e

such that pre(e) is already in U and elements of pre(e) are pairwise
concurrent.

3 Grab an element t from the queue, prioritized by the size of the local
configuration. Add t and post(t) to the branching process U. If t is a
cut-off point, then add t to the set T of terminal events/cut-off nodes.

4 Generate more possible extensions, ignoring nodes x s.t.
∃t ∈ T .t < x . Add possible extensions to the queue.

5 Repeat while Q is non-empty.
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New algorithm

Constructing a finite prefix for the net N.
1 Start with an net U, that contains only the initial marking of N and

an empty set of terminal events T .
2 Create a queue Q that contains possible extensions of U, i.e. events e

such that pre(e) is already in U and elements of pre(e) are pairwise
concurrent.

3 Grab an element t from the queue, prioritized by the relation on
events induced by ≺, i.e. choose e over e ′ if [e] ≺ [e ′]. Add t and
post(t) to the branching process U. If t is a cut-off point according to
≺, then add t to the set T of terminal events/cut-off nodes.

4 Generate more possible extensions, ignoring nodes x s.t.
∃t ∈ T .t < x . Add possible extensions to the queue.

5 Repeat while Q is non-empty.
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The completeness of the algorithm

The algorithm is correct in the sense that for every adequate order ≺ it
produces a marking-complete prefix.
Good explanation is presented in [Esparza and Heljanko, 2008].
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Examples of adequate orders

McMillan’s original order: C ≺ C ′ ⇐⇒ |C | < |C ′|
ERV order: Defined as following. Let <lex be a lexicographical order
on set of sequences of transitions; we can “lift” <lex to the set of
configurations by declaring C <lex C ′ iff flat(C ) <lex flat(C ) where
flat(C ) is a sequence of transitions ordered by <lex and contains
transition t as often as there are events in C labeled with t.
C ≺ C ′ iff

|C | < |C ′|;
or if |C | = |C ′| and C <lex C ′;
or if |C | = |C ′|, flat(C ) = flat(C ′), and

Min(C) <lex Min(C ′);
or flat(Min(C)) <lex flat(Min(C ′)) and C \Min(C) ≺ C \Min(C ′)

Min(C ) – the set of minimal (wrt the causal ordering) nodes of C .
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Examples of adequate orders

McMillan’s original order: C ≺ C ′ ⇐⇒ |C | < |C ′|
Is not a total order.
ERV order: Defined as following. Let <lex be a lexicographical order
on set of sequences of transitions; we can “lift” <lex to the set of
configurations by declaring C <lex C ′ iff flat(C ) <lex flat(C ) where
flat(C ) is a sequence of transitions ordered by <lex and contains
transition t as often as there are events in C labeled with t.
C ≺ C ′ iff

|C | < |C ′|;
or if |C | = |C ′| and C <lex C ′;
or if |C | = |C ′|, flat(C ) = flat(C ′), and

Min(C) <lex Min(C ′);
or flat(Min(C)) <lex flat(Min(C ′)) and C \Min(C) ≺ C \Min(C ′)

Min(C ) – the set of minimal (wrt the causal ordering) nodes of C .
Is a total order for 1-safe nets [Esparza et al., 1996].

Total orders are good, allow us to have more cut-off events.
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Infinite excecutability problem

Many problems can be solved using the complete finite prefixes that were
presented

Reachability
Coverability
Fireability of a transition
Deadlock freedom
Mutex
Etc

Some problems still can not be solved using such prefix.
Infinite excecutability problem?
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Cut-off criterion for infinite executability problem

Let #r (C ) denote the number of events from C labeled by transition r .

Definition (Cut-off criterion for repeated executability problem)
Event e is considered to be terminal iff there exists an event e ′ ≺ e such
that Mark([e ′]) = Mark([e]) and either

1 e ′ < e or
2 #r ([e ′]) ≥ #r ([e]).
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Model checking using unfoldings

Arbitrary properties (expressed in LTL) can be checked using unfoldings:
[Couvreur et al., 2000, Esparza and Heljanko, 2001].
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More generalizations

Cutting contex [Khomenko, 2003] is a generalization that allows us to
preserve only the properties we want when constructing a finite prefix.

Θ = (≈,≺, {Ce}e∈E )

1 ≺ – adequate order;
2 {Ce}e∈E – family of (finite) configurations of the unfolding (usually

only local configurations);
3 ≈ – equivalence relation on the set of finite configurations of the

unfolding.
4 ≈ and ≺ preserves finite extensions.

An event is cut-off iff there exists a configuration C ∈ Ce s.t. C ≺ [e] and
C ≈ [e].
In usual setting: C ≈ C ′ ⇐⇒ Mark(C ) ≈ Mark(C ′)
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More topics in true concurrency I

True concurrency semantics of process algebras
Complete finite prefixes for a model similar to branching processes +
adequate order on calculus formulae: [Langerak and Brinksma, 1999].
Summary of older work: [Boudol et al., 2008].

Axiomatic concurrency theory
Project started by Carl Petri himself.
http://www.informatik.uni-hamburg.de/TGI/forschung/
projekte/concurrency_eng.html

Trace theory
Mazurkiewicz traces – another formalism for true concurrency
semantics.
LTrL [Thiagarajan and Walukiewicz, 2002] is a logic for
communicating multi-agent systems. LTrL is to Mazurkiewicz
traces/event structures as LTL is for computational trees.
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More topics in true concurrency II

Theorem (Kamp’s theorem)
LTL is equivalent to the first-order theory of (infinite) sequences

Theorem
LTrL is equivalent to the first-order theory of traces
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Topic in true concurrency: relations

Figure 21: Illustration from “A logic for true concurrency” by Silvia Crafa
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The end

Thank you for listening!
Any questions?
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