
Jörg Desel
Robert Lorenz, Robin Bergenthum,
Gabriel Juhás, Sebastian Mauser

Synthesis of Petri nets
from scenarios (pomsets)

Given:

Model of behavior

Specified/observed behavior

ab*c

Given:

Model of behavior

Wanted:

Model of system generates

(exactly)

Synthesis

?

ab*c

Specified/observed behavior

Given:

Set of scenarios

Wanted:

Petri net generates

(exactly)

Synthesis

?
…

a b

b

a

a

Examples:

- Sequences

- Step sequences

- MSCs

- …

a b

b

Event = occurrence of a transition

a b

b

„earlier than“

„concurrent“

a b

b

„earlier than“

„concurrent“

Sequences are pomsets: corresponds to aba

a

b

a

FORMOSA

a b

b

„earlier than“

„concurrent“

Step sequences are pomsets: corr. to (a+b)a

a b

a

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

generates?
a

b

a b

b

2 1

1

1

FORMOSA

generates? a b

b

Each prefix enables following step of concurrent transitions

a

b

2 1

1

1

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

FORMOSA

generates? a b

b

a

b

2 1

1

1

Each prefix enables following step of concurrent transitions

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

FORMOSA

generates? a b

b

a

b

2 1

1

1

Each prefix enables following step of concurrent transitions

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

FORMOSA

generates? a b

b

a

b

2 1

1

1

Each prefix enables following step of concurrent transitions

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

FORMOSA

generates? a b

b

a

b

2 1

1

1

Each prefix enables following step of concurrent transitions

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

ac

abc

L

Most simple case: language of sequences

a

b

c

Exact solution (if possible)

ac

abc

L

Exact solution (if possible)

ac

abc

No internal transitions

L

a

b

c

a

b

c

Exact solution (if possible)

ac

abc

No label-splitting

L

a

b

c

a

b

c

a

a

b

c

ac

abc

Start with an empty set of places

L

a

b

c

ac

abc

Add places

? ?

?

?

?

?

?

L

a

b

c

ac

abc

Add places

0 0

1

0

0

0

0

p non-feasible

L

a

b

c

ac

abc

Add places

0 1

1

0

0

0

1

p non-feasible

L

a

b

c

ac

abc

Add places

such that the net still generates L

0 1

1

1

0

0

1

p feasible

L

a

b

c

ac

abc

Net with all feasible places:

saturated feasible net Nsat

0 1

1

1

0

0

1

p feasible

L

a

b

c

ac

abc

0 1

1

0

0

0

1

p feasible

Theorem

L(Nsat) is the smallest net language

with LL(Nsat)

L

Net with all feasible places:

saturated feasible net Nsat

a

b

c

ac

abc

0 1

1

0

0

0

1

p feasible

L

Net with all feasible places:

saturated feasible net Nsat

How to compute feasible places?

p feasible



Each proper prefix w enables the subsequent transition t

a

b

c

x7 x4

x2

x5

x6

x3

x1

p=(x1,x2,x3,x4,x5,x6,x7)

tuple of non-negative integers

ac

abc

a

b

c

x7 x4

x2

x5

x6

x3

x1

p=(x1,x2,x3,x4,x5,x6,x7)

tuple of non-negative integers

 enables a

a enables b

a enables c

ab enables c

ac

abc

p feasible



Each proper prefix w enables the subsequent transition t

a

b

c

x7 x4

x2

x5

x6

x3

x1

p=(x1,x2,x3,x4,x5,x6,x7)

tuple of non-negative integers

 enables a

a enables b

a enables c

ab enables c

ac

abc

x1  x2

x1-x2+x5  x4

x1-x2+x5  x3

x1-x2+x5-x4+x7  x3

p feasible



Each proper prefix w enables the subsequent transition t

p feasible


Each proper prefix w enables the subsequent transition t



ALp  0

 enables a

a enables b

a enables c

ab enables c

ac

abc

x1  x2 x1-x2  0

x1-x2+x5  x4 x1-x2 -x4+x5  0

x1-x2+x5  x3 x1-x2-x3 +x5  0

x1-x2+x5-x4+x7  x3 x1-x2-x3-x4+x5 +x7  0

Non-negative integer solution of ALp  0:

transition-region

[AL may have infinite many rows]

 enables a

a enables b

a enables c

ab enables c

ac

abc

x1  x2 x1-x2  0

x1-x2+x5  x4 x1-x2 -x4+x5  0

x1-x2+x5  x3 x1-x2-x3 +x5  0

x1-x2+x5-x4+x7  x3 x1-x2-x3-x4+x5 +x7  0

Non-negative integer solution of ALp  0:

transition-region

[AL may have infinite many rows]

 enables a

a enables b

a enables c

ab enables c

ac

abc

x1  x2

x1-x2+x5  x4

x1-x2+x5  x3

x1-x2+x5-x4+x7  x3

x1

x2

x3

x4

x5

x6

x7

 0

 1 -1 0 0 0 0 0
 1 -1 0 -1 1 0 0
 1 -1 -1 0 1 0 0
 1 -1 -1 -1 1 0 1

 enables a

a enables b

a enables c

ab enables c

ac

abc

x1  x2

x1-x2+x5  x4

x1-x2+x5  x3

x1-x2+x5-x4+x7  x3

Theorem

each transition region

generates a feasible place

and vice versa

Non-negative integer solution of ALp  0:

transition-region

[AL may have infinite many rows]

Language L
? Petri net N with

L=L(N)

Language L
? Petri net N with

L=L(N)

What if no such net N exists?

Language L
? Petri net N with

LL(N), L(N) minimal

Language L
? Petri net N with

LL(N), L(N) minimal

Regions Feasible places

Language L
? Petri net N with

LL(N), L(N) minimal

transition

regions

feasible places

Non-negative integer solutions

of linear inequation system

Non-negative integer solution of ALp  0:

transition-region

- AL may have infinitely many rows,

if the language L is infinite

- If the language L is finite then

the solution space is a pointed polyhedral cone,

i.e., is generated by a finite set of rays

What feasible places should we add?

A

B A

B

solution space of this inequality system:
 - pointed polyhedral cone
 - generated by a finite set of rays.

What feasible places should we add?

A B

2

A

B A

B

Add places corresponding to the rays of the cone

(… and then find and delete implicit ones)

Prefix w extended by new transition t:

wrong continuation wtL

ac

abc

Prefix w extended by new transition t:

wrong continuation wtL

ac

abc

Prefix w extended by new transition t:

wrong continuation wtL

b c

aa aba

abb aca

acb acc

abca abcb

abcc

ac

abc

Net with set of feasible places prohibiting all

wrong continuations which can be prohibited:

separating-representation Nsep

b c

aa aba

abb aca

acb acc

abca abcb

abcc

ac

abc

Set of places prohibiting all

wrong continuations which can be prohibited:

separating-representation

b c

aa aba

abb aca

acb acc

abca abcb

abcc

ac

abc

Theorem

L(Nsep)=L(Nsat)=L

if and only if

each wrong continuation is prohibited

by some feasible place

p is feasible and prohibits wt



ALp0  bwtp<0

[there may be infinitely many wrong continuations]

a

b

c

x7 x4

x2

x5

x6

x3

x1

p=(x1,x2,x3,x4,x5,x6,x7)

tuple of non-negative integers

b c

aa aba

abb aca

acb acc

abca abcb

abcc

ac

abc

x1 < x4 x1 < x3

x1-x2+x5 < x2 …

p is feasible and prohibits wt



ALp0  bwtp<0

[there may be infinitely many wrong continuations]

a

b

c

x7 x4

x2

x5

x6

x3

x1

p=(x1,x2,x3,x4,x5,x6,x7)

tuple of non-negative integers

b c

aa aba

abb aca

acb acc

abca abcb

abcc

ac

abc

x1 < x4 x1 < x3

x1-x2+x5 < x2 …

Theorem

L fulfills conditions on semi-linearity

(L regular, det. context-free, …):

The matrix AL and the set of wrong

continuations can be finitely represented

L finite:

Computation is polynomial

a b

b

a

c

L
General case: language of pomsets

p feasible



Each prefix w enables subsequent step s

a

b

c

x7 x4

x2

x5

x6

x3

x1

a b

b

a

c

L

p feasible



ALp  0

a

b

c

x7 x4

x2

x5

x6

x3

x1

a b

b

a

c

L

p feasible



ALp  0

a

b

c

x7 x4

x2

x5

x6

x3

x1

a b

b

a

c

L

L finite:

There are exponentially many prefixes:

AL has exponentially many rows

a b

b

a

c
a

b

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14

Tokens consumed from the initial marking

Token flow between transition occurrences

Tokens remaining in the final marking

x4 x7

p=(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14)

tuple of non-negative integers

The token flow approach

a b

b

a

c
a

b

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4 x7

p=(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14)

tuple of non-negative integers

The initial marking of the place

Token flow between transition occurrences on the place

New tokens remaining in the final marking of the place

a

b

c

x1+x2+x3+x4= x5+x6+x7

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4 x7

initial flow of left pomset

The initial marking of the place

Token flow between transition occurrences on the place

New tokens remaining in the final marking of the place

initial flow of right pomset

a

b

c

x2=x3+x13

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4 x7

in-flow of b

The initial marking of the place

Token flow between transition occurrences on the place

New tokens remaining in the final marking of the place

a

b

c

x11+x14=x8+x13

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4 x7

out-flow of a

The initial marking of the place

Token flow between transition occurrences on the place

New tokens remaining in the final marking of the place

a

b

c

a b

b

a

c
1

1

1 1 1

0 0

1 0

1 0

2
0 1

2

1 2

1 1

2

0

Equally labeled nodes have equal in-flow and equal out-flow

Each pomset has the same initial flow

FORMOSA

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4 x7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x1

.

.

.

.

x14

=0

Equally labeled nodes have equal in-flow and equal out-flow

Each pomset has the same initial flow

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0

x1

.

.

.

.

x14

=0

Each pomset has the same initial flow

x7

Equally labeled nodes have equal in-flow and out-flow

Each pomset has the same initial flow

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0

1 0 0 0 -1 0 0 0 0 0 0 0 0 0
x1

.

.

.

.

x14

=0

a-labeled nodes have the same in-flow

x7

Equally labeled nodes have equal in-flow and out-flow

Each pomset has the same initial flow

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0

1 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 -1 0 1 -1

x1

.

.

.

.

x14

=0

a-labeled nodes have the same out-flow

x7

Equally labeled nodes have equal in-flow and out-flow

Each pomset has the same initial flow

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0

1 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 -1 0 1 -1

0 1 -1 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 1 -1 0 0 0 0

x1

.

.

.

.

x14

=0 x7

Equally labeled nodes have equal in-flow and out-flow

Each pomset has the same initial flow

b-labeled nodes have …

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0

1 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 -1 0 1 -1

0 1 -1 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 1 -1 0 0 0 0

x1

.

.

.

.

x14

=0 x7

Equally labeled nodes have equal in-flow and out-flow

Each pomset has the same initial flow

 

 BLp = 0

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0

1 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 -1 0 1 -1

0 1 -1 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 1 -1 0 0 0 0

x1

.

.

.

.

x14

=0 x7

Non-negative integer solutions of BLx=0:

token-flow-regions

a b

b

a

c
x13

x8

x1 x2 x5

x6 x3

x9 x11

x10 x12

x14
x4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0

1 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 -1 0 1 -1

0 1 -1 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 1 -1 0 0 0 0

x1

.

.

.

.

x14

=0 x7

Non-negative integer solutions of BLx=0:

token-flow-regions

Theorem

Each token-flow-regions generates a

feasible place and vice versa

L finite:

BL has linear many rows

BL finite:

Set of non-negative integer solutions of BLp=0

is finitely generated by a fundamental system

of solutions y1,…,yk

a b

b

a

c

L

BL finite:

Net with set of places defined by fundamental

system of solutions y1,…,yk of BLp=0:

Basis-representation Nbasis

a b

b

a

c

L

p is feasible and prohibits ws



BLp=0  cwsp<0

a b

b

a

c

L

x5 + x6 + x7 < x6 + x14

p is feasible and prohibits ws



BLp=0  cwsp<0

a b

b

a

c

L

L finite:

There are exponentially many wrong

continuations

BL finite:

Net with set of places defined by fundamental

system of solutions y1,…,yk of BLp=0:

Basis-representation Nbasis

a b

b

a

c

L

Theorem

Term-based representation of L

(using operators for iteration, union,

parallel & sequential composition):

BL can be finitely represented

BL finite:

Net with set of places defined by fundamental

system of solutions y1,…,yk of BLp=0:

Basis-representation Nbasis

a b

b

a

c

L

Theorem

Term-based representation of L

(using operators for iteration, union,

parallel & sequential composition):

BL can be finitely represented

BL finite:

Net with set of places defined by fundamental

system of solutions y1,…,yk of BLp=0:

Basis-representation Nbasis

a b

b

a

c

L Theorem

Term-based representation of L

(using operators for iteration, union,

parallel & sequential composition):

BL can be finitely represented

L(Nbasis)=L(Nsat)

BL finite:

Net with set of places defined by fundamental

system of solutions y1,…,yk of BLp=0:

Basis-representation Nbasis

a b

b

a

c

L

Theorem

Term-based representation of L

(using operators for iteration, union,

parallel & sequential composition):

BL can be finitely represented

L(Nbasis)=L(Nsat)

L finite:

L=L(Nbasis) is decidable

FORMOSA

BL finite:

Net with set of places defined by fundamental

system of solutions y1,…,yk of BLp=0:

Basis-representation Nbasis

a b

b

a

c

L

Theorem

Term-based representation of L

(using operators for iteration, union,

parallel & sequential composition):

BL can be finitely represented

L(Nbasis)=L(Nsat)

L finite:

L=L(Nbasis) is decidable

Computations are exponential

in the worst case

http://www.informatik.uni-augsburg.de/swt/formosa/projekt

Rules of thump

The more concurrency L includes …

 …the smaller is BL (for the definition of token flow-regions)

 …the bigger is AL (for the definition of transition-regions)

 …the more wrong continuations have to be considered

 (for the calculation of the separating-representation)

Adaption to any Petri net class possible …

 … through adding rows to AL resp. BL

p/t-nets

elementary nets

nets with inhibitor arcs

workflow nets

…

classical languages

step languages

partial languages

stratified languages

transition-regions

token flow-regions

separating-representation

basis-representation

Non-negative integer solutions

of linear inequation systems

classical languages

step languages

partial languages

stratified languages

transition-regions

token flow-regions
separating-representation

basis-representation

Non-negative integer solutions

of linear inequation systems

solved by the group of

Philippe Darondeau

p/t-nets

elementary nets

nets with inhibitor arcs

workflow nets

…

classical languages

step languages

partial languages

stratified languages

transition-regions

token flow-regions

separating-representation

basis-representation

Non-negative integer solutions

of linear inequation systems

The „Eichstätt“ group

p/t-nets

elementary nets

nets with inhibitor arcs

workflow nets

…

Application

Process-Mining

Business Process Design

Controller Synthesis

Implementation in VIPtool (available online)

(Tool for modeling and partial order based simulation, verification,

validation and synthesis of Petri net models)

Case Study

Modeling Business Processes from Scenarios: Initial Situation

Knowledge about
the process

Knowledge about a process is distributed in several peoples‘ mind in an

informal environment

Case Study

Modeling Business Processes from Scenarios: Initial Situation

Knowledge about
the process

single scenarios

requirements engineering

Case Study

Modeling Business Processes from Scenarios: Initial Situation

Knowledge about
the process

single scenarios

requirements engineering

partially ordered runs

formalization

Case Study

Formal runs in an insurance company: Single Scenarios

Receive
Claim

Register
Claim

Assign Claim
Expert

Registration Check
Damage

Send
Acceptance

Letter

Check
Insurance

Positive
Evaluation

Check
Damage

Send
Refusal
Letter

Check
Insurance

Negative
Evaluation 1

Case Study

Formal runs in an insurance company: Single Scenarios

Check
Damage

Send
Refusal
Letter

Check
Insurance

Send
Refusal
Letter

Estimate
Damage

Pay
Damage

Negative
Evaluation 2

Negative
Evaluation 3

Payment

Case Study

Formal runs in an insurance company: Single Scenarios

Complete
Claim

Completion

Ask
Additional

Queries

Queries

Set
Aside

Reserves

Reserves

Case Study

Formal runs in an insurance company: Composition

Registration

Positive
Evaluation

Completion

Reserves ||

Payment

Queries *
Negative

Evaluation 1
Negative

Evaluation 2
Negative

Evaluation 3
+ + +

Case Study

Formal runs in an insurance company

Registration

Positive
Evaluation

Completion

Reserves ||

Payment

Queries *
Negative

Evaluation 1
Negative

Evaluation 2
Negative

Evaluation 3
+ + +

Sequential Composition

Case Study

Formal runs in an insurance company

Registration

Positive
Evaluation

Completion

Reserves ||

Payment

Queries *
Negative

Evaluation 1
Negative

Evaluation 2
Negative

Evaluation 3
+ + +

Parallel Composition

Case Study

Formal runs in an insurance company

Registration

Positive
Evaluation

Completion

Reserves ||

Payment

Queries *
Negative

Evaluation 1
Negative

Evaluation 2
Negative

Evaluation 3
+ + +

Alternative Composition

Case Study

Formal runs in an insurance company

Registration

Positive
Evaluation

Completion

Reserves ||

Payment

Queries *
Negative

Evaluation 1
Negative

Evaluation 2
Negative

Evaluation 3
+ + +

Iteration

Case Study

Formal runs in an insurance company: Composed Run 1

Check

Insurance

Send Refusal Letter

Check Damage

Receive Claim

Register Claim
Assign Claim

Expert

Set Aside Reserves

Complete Claim

Case Study

Formal runs in an insurance company: Composed Run 2

Check

Insurance

Send Refusal Letter

Receive Claim

Register Claim
Assign Claim

Expert

Set Aside Reserves

Complete Claim

Case Study

Formal runs in an insurance company: Composed Run 3

Send Refusal Letter

Check Damage

Receive Claim

Register Claim
Assign Claim

Expert

Set Aside Reserves

Complete Claim

Case Study

Formal runs in an insurance company: Composed Run 4

Check

Insurance
Send Acceptance Letter

Check Damage

Receive Claim

Register Claim
Assign Claim

Expert

Set Aside Reserves

Complete Claim

Estimate Damage

Pay Damage

Case Study

Formal runs in an insurance company: Composed Run 5

Check

Insurance
Send Acceptance Letter

Check Damage

Receive Claim

Register Claim
Assign Claim

Expert

Set Aside Reserves

Complete Claim

Estimate Damage

Pay Damage

Ask additional queries

Case Study

Formal runs in an insurance company: Synthesis Result

Case Study

Knowledge about
the process

single scenarios

partially ordered runs

requirements engineering

formalization

synthesis

process model

Tool Support

Tool Support

Tool Support

