Synthesis of Petri nets from scenarios (pomsets)

Jörg Desel Robert Lorenz, Robin Bergenthum, Gabriel Juhás, Sebastian Mauser

Given: Model of behavior

Specified/observed behavior

Specified/observed behavior

Sequences are pomsets:

Most simple case: language of sequences

Exact solution (if possible)

Exact solution (if possible)

Exact solution (if possible)

Start with an empty set of places

Add places

Add places

Add places

Add places such that the net still generates L

Net with all feasible places: saturated feasible net N_{sat}

Net with all feasible places: saturated feasible net N_{sat}

Net with all feasible places: saturated feasible net N_{sat}

ac abc

$p=(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ tuple of non-negative integers

p feasible

\Leftrightarrow

Each proper prefix w enables the subsequent transition t

 $p=(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ tuple of non-negative integers

p feasible

Each proper prefix w enables the subsequent transition t

 $p=(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ tuple of non-negative integers

 $\begin{array}{c} \mathbf{X}_{1} \geq \mathbf{X}_{2} \\ \mathbf{X}_{1} - \mathbf{X}_{2} + \mathbf{X}_{5} \geq \mathbf{X}_{4} \\ \mathbf{X}_{1} - \mathbf{X}_{2} + \mathbf{X}_{5} \geq \mathbf{X}_{3} \\ \mathbf{X}_{1} - \mathbf{X}_{2} + \mathbf{X}_{5} - \mathbf{X}_{4} + \mathbf{X}_{7} \geq \mathbf{X}_{3} \end{array}$

p feasible

Each proper prefix w enables the subsequent transition t

p feasible

Each proper prefix w enables the subsequent transition t

p ≥ 0

 \Leftrightarrow

Non-negative integer solution of $A_L p \ge 0$: transition-region

[A_L may have infinite many rows]

Non-negative integer solution of $A_L p \ge 0$: transition-region

[A_L may have infinite many rows]

<u>Theorem</u> each transition region generates a feasible place and vice versa

Non-negative integer solution of $A_L p \ge 0$: transition-region

[A_L may have infinite many rows]

Language L $\xrightarrow{?}$ Petri net N with L=L(N)

What if no such net N exists?

Non-negative integer solution of $A_L p \ge 0$: transition-region

- A_L may have infinitely many rows, if the language L is infinite
- If the language L is finite then the solution space is a pointed polyhedral cone, i.e., is generated by a finite set of rays

What feasible places should we add?

solution space of this inequality system:

- pointed polyhedral cone
- generated by a finite set of rays.

What feasible places should we add?

Add places corresponding to the rays of the cone

(... and then find and delete implicit ones)

Prefix w extended by new transition t: wrong continuation wt∉L

Prefix w extended by new transition t: wrong continuation wt∉L

Net with set of feasible places prohibiting all wrong continuations which can be prohibited: separating-representation N_{sep}

		b	С		
a	C	aa	aba		
а	bc	abb	aca		
		acb	acc		_
Theorem					
	if and only if				
	each wrong continuation is prohibited				
	by some feasible place				
	by some reasible place				
Set of places prohibiting an					
wrong continuations which can be prohibited:					
separating-representation					

p is feasible and prohibits wt \Leftrightarrow $A_L p \ge 0 \land b_{wt} p < 0$

[there may be infinitely many wrong continuations]

[there may be infinitely many wrong continuations]

General case: language of pomsets

$\begin{array}{c|c} L \\ \hline a & b & a \\ \hline b & c \\ \hline a \\ \hline x_7 & x_4 \\ \hline x_7 & x_6 \\ \hline a \\ \hline x_5 & x_5 \\ \hline x_6 \\ \hline x_7 & x_7 \\ \hline x_7 & x_6 \\ \hline x_7 & x_7 \\ \hline$

p feasible

 \Leftrightarrow

Each prefix w enables subsequent step s

p feasible \Leftrightarrow $A_L p \ge 0$

$p=(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14})$ tuple of non-negative integers

Tokens consumed from the initial marking Token flow between transition occurrences Tokens remaining in the final marking

$p=(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14})$ tuple of non-negative integers

The initial marking of the place

Each pomset has the same initial flow

a-labeled nodes have the same in-flow

a-labeled nodes have the same out-flow

b-labeled nodes have ...

Non-negative integer solutions of B_Lx=0: token-flow-regions

B_L finite: Set of non-negative integer solutions of B_Lp=0 is finitely generated by a fundamental system of solutions y₁,...,y_k

B_L finite: Net with set of places defined by fundamental system of solutions y₁,...,y_k of B_Lp=0: Basis-representation N_{basis}

p is feasible and prohibits ws \Leftrightarrow $B_L p=0 \land c_{ws} p<0$

<u>Theorem</u>

Term-based representation of L (using operators for iteration, union, parallel & sequential composition): **B_L can be finitely represented**

Net with set of places defined by fundamental system of solutions y₁,...,y_k of B_Lp=0: Basis-representation N_{basis}

Rules of thump

The more concurrency L includes ...

...the smaller is B_L (for the definition of token flow-regions)

...the bigger is A_L (for the definition of transition-regions)

...the more wrong continuations have to be considered (for the calculation of the separating-representation)

Adaption to any Petri net class possible ...

... through adding rows to A_L resp. B_L

elementary nets nets with inhibitor arcs workflow nets classical languages step languages partial languages stratified languages

p/t-nets elementary nets nets with inhibitor arcs workflow nets

classical languages step languages partial languages stratified languages transition-regions token flow-regions separating-representation basis-representation

The "Eichstätt" group

Non-negative integer solutions of linear inequation systems

p/t-nets elementary nets nets with inhibitor arcs workflow nets

classical languages step languages partial languages stratified languages

- **Process-Mining**
- **Business Process Design**
- **Controller Synthesis**

Implementation in VIPtool (*available online*) (Tool for modeling and partial order based simulation, verification, validation and synthesis of Petri net models)

Modeling Business Processes from Scenarios: Initial Situation

Knowledge about a process is distributed in several peoples' mind in an informal environment

Modeling Business Processes from Scenarios: Initial Situation

Modeling Business Processes from Scenarios: Initial Situation

Formal runs in an insurance company: Single Scenarios

Formal runs in an insurance company: Single Scenarios

Formal runs in an insurance company: Single Scenarios

Formal runs in an insurance company

Formal runs in an insurance company

Formal runs in an insurance company_____

Formal runs in an insurance company: Synthesis Result 🍢 VipTool - log message

2008.Jun.09 16:07:00 MESSAGE | VipTool session started. |

2009 Tom 06 16.07.00 MECCICE

Tool Support

Tool Support

Tool Support

