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Synthesis of Petri nets  
from scenarios (pomsets) 



Given: 

Model of behavior 

Specified/observed behavior 

ab*c 



Given: 

Model of behavior 

Wanted: 

Model of system generates 

 

(exactly) 

Synthesis 

? 

ab*c 

Specified/observed behavior 



Given: 

Set of scenarios 

Wanted: 

Petri net generates 

 

(exactly) 

Synthesis 

? 
… 

a b 

b 

a 

a 

Examples: 

- Sequences 

- Step sequences 

- MSCs 

- … 



a b 

b 

Event = occurrence of a transition 



a b 

b 

„earlier than“ 

„concurrent“ 



a b 

b 

„earlier than“ 

„concurrent“ 

Sequences are pomsets:                         corresponds to     aba 

a 

b 

a 



FORMOSA 

a b 

b 

„earlier than“ 

„concurrent“ 

Step sequences are pomsets:                    corr. to     (a+b)a 

a b 

a 
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generates? 
a 

b 

a b 

b 

2 1 

1 

1 



FORMOSA 

generates? a b 

b 

Each prefix enables following step of concurrent transitions 

a 

b 

2 1 

1 

1 
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generates? a b 

b 

a 

b 

2 1 

1 
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FORMOSA 

generates? a b 

b 

a 

b 

2 1 

1 

1 

Each prefix enables following step of concurrent transitions 
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ac 

abc 

L 

Most simple case: language of sequences 



a 

b 

c 

Exact solution (if possible) 

ac 

abc 

L 



Exact solution (if possible) 

ac 

abc 

No internal transitions 

L 

a 

b 

c 

a 

b 

c 



Exact solution (if possible) 

ac 

abc 

No label-splitting 

L 

a 

b 

c 

a 

b 

c 

a 



a 

b 

c 

ac 

abc 

Start with an empty set of places 

L 



a 

b 

c 

ac 

abc 

Add places 

? ? 

? 

? 

? 

? 

? 

L 



a 

b 

c 

ac 

abc 

Add places 

0 0 

1 

0 

0 

0 

0 

p non-feasible 

L 



a 

b 

c 

ac 

abc 

Add places 

0 1 

1 

0 

0 

0 

1 

p non-feasible 

L 



a 

b 

c 

ac 

abc 

Add places 

such that the net still generates L 

0 1 

1 

1 

0 

0 

1 

p feasible 

L 



a 

b 

c 

ac 

abc 

Net with all feasible places:  

saturated feasible net Nsat 

0 1 

1 

1 

0 

0 

1 

p feasible 

L 



a 

b 

c 

ac 

abc 

0 1 

1 

0 

0 

0 

1 

p feasible 

Theorem 

L(Nsat) is the smallest net language 

with LL(Nsat)  

L 

Net with all feasible places:  

saturated feasible net Nsat 



a 

b 

c 

ac 

abc 

0 1 

1 

0 

0 

0 

1 

p feasible 

L 

Net with all feasible places:  

saturated feasible net Nsat 

How to compute feasible places? 



p feasible 

 
 

Each proper prefix w enables the subsequent transition t 

a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

p=(x1,x2,x3,x4,x5,x6,x7) 

tuple of non-negative integers 

ac 

abc 



a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

p=(x1,x2,x3,x4,x5,x6,x7) 

tuple of non-negative integers 

 enables a 

a enables b 

a enables c 

ab enables c 

ac 

abc 

p feasible 

 
 

Each proper prefix w enables the subsequent transition t 



a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

p=(x1,x2,x3,x4,x5,x6,x7) 

tuple of non-negative integers 

 enables a 

a enables b 

a enables c 

ab enables c 

ac 

abc 

x1  x2  

x1-x2+x5  x4  

x1-x2+x5  x3  

x1-x2+x5-x4+x7  x3 

p feasible 

 
 

Each proper prefix w enables the subsequent transition t 



p feasible 

 
Each proper prefix w enables the subsequent transition t 

 

ALp  0 

 enables a 

a enables b 

a enables c 

ab enables c 

ac 

abc 

x1  x2    x1-x2     0  

x1-x2+x5  x4    x1-x2      -x4+x5  0  

x1-x2+x5  x3    x1-x2-x3     +x5   0  

x1-x2+x5-x4+x7  x3  x1-x2-x3-x4+x5  +x7   0 



Non-negative integer solution of ALp  0:  

transition-region 
 

[AL may have infinite many rows ] 

 enables a 

a enables b 

a enables c 

ab enables c 

ac 

abc 

x1  x2    x1-x2     0  

x1-x2+x5  x4    x1-x2      -x4+x5  0  

x1-x2+x5  x3    x1-x2-x3     +x5   0  

x1-x2+x5-x4+x7  x3  x1-x2-x3-x4+x5  +x7   0 



Non-negative integer solution of ALp  0:  

transition-region 
 

[AL may have infinite many rows ] 

 enables a 

a enables b 

a enables c 

ab enables c 

ac 

abc 

x1  x2    

x1-x2+x5  x4    

x1-x2+x5  x3    

x1-x2+x5-x4+x7  x3  

x1 

x2 

x3 

x4 

x5 

x6 

x7 

  0 

 1 -1  0  0 0 0 0 
 1 -1  0 -1 1 0 0 
 1 -1 -1  0 1 0 0 
 1 -1 -1 -1 1 0 1 



 enables a 

a enables b 

a enables c 

ab enables c 

ac 

abc 

x1  x2  

x1-x2+x5  x4  

x1-x2+x5  x3  

x1-x2+x5-x4+x7  x3 

Theorem 

each transition region   

generates a feasible place 

and vice versa 

Non-negative integer solution of ALp  0:  

transition-region 
 

[AL may have infinite many rows ] 



Language L 
? Petri net N with  

L=L(N) 



Language L 
? Petri net N with  

L=L(N) 

What if no such net N exists? 



Language L 
? Petri net N with  

LL(N), L(N) minimal 



Language L 
? Petri net N with  

LL(N), L(N) minimal 

Regions Feasible places 



Language L 
? Petri net N with  

LL(N), L(N) minimal 

transition  

regions 

feasible places 

Non-negative integer solutions 

of linear inequation system 



Non-negative integer solution of ALp  0:  

transition-region 
 

- AL may have infinitely many rows,  

if the language L is infinite 

  

- If the language L is finite then  

the solution space is a pointed polyhedral cone,  

i.e., is generated by a finite set of rays 



What feasible places should we add? 

A 

B A 

B 

solution space of this inequality system: 
       - pointed polyhedral cone  
       - generated by a finite set of rays. 



What feasible places should we add? 

A B 

2 

A 

B A 

B 

Add places corresponding to the rays of the cone 

(… and then find and delete implicit ones) 



Prefix w extended by new transition t:   

wrong continuation wtL 

ac 

abc 



Prefix w extended by new transition t:   

wrong continuation wtL 

ac 

abc 



Prefix w extended by new transition t:   

wrong continuation wtL 

b  c 

aa  aba 

abb  aca 

acb  acc 

abca  abcb 

abcc 

ac 

abc 



Net with set of feasible places prohibiting all  

wrong continuations which can be prohibited: 

separating-representation Nsep 

b  c 

aa  aba 

abb  aca 

acb  acc 

abca  abcb 

abcc 

ac 

abc 



Set of places prohibiting all  

wrong continuations which can be prohibited: 

separating-representation  

b  c 

aa  aba 

abb  aca 

acb  acc 

abca  abcb 

abcc 

ac 

abc 

Theorem 

L(Nsep)=L(Nsat)=L  

if and only if  

each wrong continuation is prohibited 

by some feasible place 



p is feasible and prohibits wt 

 

ALp0  bwtp<0  
 

[there may be infinitely many wrong continuations] 

a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

p=(x1,x2,x3,x4,x5,x6,x7) 

tuple of non-negative integers 

b  c 

aa  aba 

abb  aca 

acb  acc 

abca  abcb 

abcc 

ac 

abc 

x1 < x4  x1 < x3  

x1-x2+x5 < x2  … 



p is feasible and prohibits wt 

 

ALp0  bwtp<0  
 

[there may be infinitely many wrong continuations] 

a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

p=(x1,x2,x3,x4,x5,x6,x7) 

tuple of non-negative integers 

b  c 

aa  aba 

abb  aca 

acb  acc 

abca  abcb 

abcc 

ac 

abc 

x1 < x4  x1 < x3  

x1-x2+x5 < x2  … 

Theorem 

L fulfills conditions on semi-linearity 

(L regular, det. context-free, …): 

The matrix AL and the set of wrong 

continuations can be finitely represented 

 

L finite: 

Computation is polynomial 



a b 

b 

a 

c 

L 
General case: language of pomsets 



p feasible 

 

Each prefix w enables subsequent step s 

a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

a b 

b 

a 

c 

L 



p feasible 

 

ALp  0 

a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

a b 

b 

a 

c 

L 



p feasible 

 

ALp  0 

a 

b 

c 

x7 x4 

x2 

x5 

x6 

x3 

x1 

a b 

b 

a 

c 

L 

L finite: 

There are exponentially many prefixes: 

AL has exponentially many rows 



a b 

b 

a 

c 
a 

b 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 

Tokens consumed from the initial marking 

Token flow between transition occurrences 

Tokens remaining in the final marking 

x4 x7 

p=(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14)  

tuple of non-negative integers 

  

The token flow approach 

 



a b 

b 

a 

c 
a 

b 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 x7 

p=(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14)  

tuple of non-negative integers 

The initial marking of the place 

Token flow between transition occurrences on the place 

New tokens remaining in the final marking of the place 



a 

b 

c 

x1+x2+x3+x4= x5+x6+x7 

a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 x7 

initial flow of left pomset 

The initial marking of the place 

Token flow between transition occurrences on the place 

New tokens remaining in the final marking of the place 

initial flow of right pomset 



a 

b 

c 

x2=x3+x13 

a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 x7 

in-flow of b 

The initial marking of the place 

Token flow between transition occurrences on the place 

New tokens remaining in the final marking of the place 



a 

b 

c 

x11+x14=x8+x13 

a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 x7 

out-flow of a 

The initial marking of the place 

Token flow between transition occurrences on the place 

New tokens remaining in the final marking of the place 



a 

b 

c 

a b 

b 

a 

c 
1 

1 

1 1 1 

0 0 

1 0 

1 0 

2 
0 1 

2 

1 2 

1 1 

2 

0 

Equally labeled nodes have equal in-flow and equal out-flow 

Each pomset has the same initial flow 



FORMOSA 

a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 x7 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

 

x1 

. 

. 

. 

. 

x14 

=0 

Equally labeled nodes have equal in-flow and equal out-flow 

Each pomset has the same initial flow 
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a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

1  1  1  1 -1 -1 -1  0  0   0   0   0   0   0 

x1 

. 

. 

. 

. 

x14 

=0 

Each pomset has the same initial flow 

x7 

Equally labeled nodes have equal in-flow and out-flow 

Each pomset has the same initial flow 



a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

1  1  1 1 -1 -1 -1  0  0   0   0   0   0   0 

 

1  0  0  0  -1 0  0  0  0   0   0   0   0   0    
x1 

. 

. 

. 

. 

x14 

=0 

a-labeled nodes have the same in-flow 

x7 

Equally labeled nodes have equal in-flow and out-flow 

Each pomset has the same initial flow 



a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

1  1  1  1 -1 -1 -1  0  0   0   0   0   0   0 

 

1  0  0  0  -1 0  0  0  0   0   0   0   0   0 

 

0  0  0  0  0  0  0  1  0   0  -1   0   1  -1 

 

 

 

    

x1 

. 

. 

. 

. 

x14 

=0 

a-labeled nodes have the same out-flow 

x7 

Equally labeled nodes have equal in-flow and out-flow 

Each pomset has the same initial flow 



a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

1  1  1  1 -1 -1 -1  0  0   0   0   0   0   0 

 

1  0  0  0  -1 0  0  0  0   0   0   0   0   0 

 

0  0  0  0  0  0  0  1  0   0  -1   0   1  -1 

 

0  1 -1  0  0  0  0  0  0   0   0   0  -1   0 

 

0  0  0  0  0  0  0  0  1  -1   0   0   0   0  

x1 

. 

. 

. 

. 

x14 

=0 x7 

Equally labeled nodes have equal in-flow and out-flow 

Each pomset has the same initial flow 

b-labeled nodes have … 



a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

1  1  1  1 -1 -1 -1  0  0   0   0   0   0   0 

 

1  0  0  0  -1 0  0  0  0   0   0   0   0   0 

 

0  0  0  0  0  0  0  1  0   0  -1   0   1  -1 

 

0  1 -1  0  0  0  0  0  0   0   0   0  -1   0 

 

0  0  0  0  0  0  0  0  1  -1   0   0   0   0  

x1 

. 

. 

. 

. 

x14 

=0 x7 

Equally labeled nodes have equal in-flow and out-flow 

Each pomset has the same initial flow 

        

   BLp = 0 



a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

1  1  1  1 -1 -1 -1  0  0   0   0   0   0   0 

 

1  0  0  0  -1 0  0  0  0   0   0   0   0   0 

 

0  0  0  0  0  0  0  1  0   0  -1   0   1  -1 

 

0  1 -1  0  0  0  0  0  0   0   0   0  -1   0 

 

0  0  0  0  0  0  0  0  1  -1   0   0   0   0  

x1 

. 

. 

. 

. 

x14 

=0 x7 

Non-negative integer solutions of BLx=0: 

token-flow-regions 



a b 

b 

a 

c 
x13 

x8 

x1 x2 x5 

x6 x3 

x9 x11 

x10 x12 

x14 
x4 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 

 

          

1  1  1  1 -1 -1 -1  0  0   0   0   0   0   0 

 

1  0  0  0  -1 0  0  0  0   0   0   0   0   0 

 

0  0  0  0  0  0  0  1  0   0  -1   0   1  -1 

 

0  1 -1  0  0  0  0  0  0   0   0   0  -1   0 

 

0  0  0  0  0  0  0  0  1  -1   0   0   0   0  

x1 

. 

. 

. 

. 

x14 

=0 x7 

Non-negative integer solutions of BLx=0: 

token-flow-regions 

Theorem 

Each token-flow-regions generates a 

feasible  place and vice versa 

 

L finite: 

BL has linear many rows 



BL finite:  

Set of non-negative integer solutions of BLp=0  

is finitely generated by a fundamental system 

of solutions y1,…,yk 

a b 

b 

a 

c 

L 



 

BL finite:  

Net with set of places defined by fundamental 

system of solutions y1,…,yk of BLp=0: 

Basis-representation Nbasis 

a b 

b 

a 

c 

L 



p is feasible and prohibits ws 

 

BLp=0  cwsp<0  
 

  

a b 

b 

a 

c 

L 



x5 + x6 + x7 < x6 + x14 

p is feasible and prohibits ws 

 

BLp=0  cwsp<0  
 

a b 

b 

a 

c 

L 

L finite: 

There are exponentially many wrong 

continuations 



 

BL finite:  

Net with set of places defined by fundamental 

system of solutions y1,…,yk of BLp=0: 

Basis-representation Nbasis 

a b 

b 

a 

c 

L 

Theorem 

Term-based representation of L  

(using operators for iteration, union, 

parallel & sequential composition): 

BL can be finitely represented 



 

BL finite:  

Net with set of places defined by fundamental 

system of solutions y1,…,yk of BLp=0: 

Basis-representation Nbasis 

a b 

b 

a 

c 

L 

Theorem 

Term-based representation of L  

(using operators for iteration, union, 

parallel & sequential composition): 

BL can be finitely represented 



 

BL finite:  

Net with set of places defined by fundamental 

system of solutions y1,…,yk of BLp=0: 

Basis-representation Nbasis 

a b 

b 

a 

c 

L Theorem 

Term-based representation of L  

(using operators for iteration, union, 

parallel & sequential composition): 

BL can be finitely represented 

 

L(Nbasis)=L(Nsat) 



 

BL finite:  

Net with set of places defined by fundamental 

system of solutions y1,…,yk of BLp=0: 

Basis-representation Nbasis 

a b 

b 

a 

c 

L 

Theorem 

Term-based representation of L  

(using operators for iteration, union, 

parallel & sequential composition): 

BL can be finitely represented 

 

L(Nbasis)=L(Nsat) 

 

L finite: 

L=L(Nbasis) is decidable 



FORMOSA 

 

BL finite:  

Net with set of places defined by fundamental 

system of solutions y1,…,yk of BLp=0: 

Basis-representation Nbasis 

a b 

b 

a 

c 

L 

Theorem 

Term-based representation of L  

(using operators for iteration, union, 

parallel & sequential composition): 

BL can be finitely represented 

 

L(Nbasis)=L(Nsat) 

 

L finite: 

L=L(Nbasis) is decidable 

Computations are exponential 

in the worst case 
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Rules of thump 

The more concurrency L includes …  
 

 

 …the smaller is BL (for the definition of token flow-regions) 

 

 …the bigger is AL (for the definition of transition-regions) 

 

 …the more wrong continuations have to be considered 

    (for the calculation of the separating-representation) 

 

Adaption to any Petri net class possible … 

 

 … through adding rows to AL resp. BL 



p/t-nets 

elementary nets 

nets with inhibitor arcs 

workflow nets 

… 

classical languages 

step languages 

partial languages 

stratified languages 

transition-regions 

token flow-regions 

separating-representation 

basis-representation 

Non-negative integer solutions 

of linear inequation systems 



classical languages 

step languages 

partial languages 

stratified languages 

transition-regions 

token flow-regions 
separating-representation 

basis-representation 

Non-negative integer solutions 

of linear inequation systems 

solved by the group of  

Philippe Darondeau 

p/t-nets 

elementary nets 

nets with inhibitor arcs 

workflow nets 

… 



classical languages 

step languages 

partial languages 

stratified languages 

transition-regions 

token flow-regions 

separating-representation 

basis-representation 

Non-negative integer solutions 

of linear inequation systems 

The „Eichstätt“ group 

p/t-nets 

elementary nets 

nets with inhibitor arcs 

workflow nets 

… 



Application 

 

Process-Mining 

 

Business Process Design 

 

Controller Synthesis 

 

 

 

Implementation in VIPtool (available online) 

(Tool for modeling and partial order based simulation, verification,  

validation and synthesis of Petri net models) 



Case Study 

Modeling Business Processes from Scenarios: Initial Situation 

Knowledge about 
the process 

Knowledge about a process is distributed in several peoples‘ mind in an 

informal environment 



Case Study 

Modeling Business Processes from Scenarios: Initial Situation 

Knowledge about 
the process 

single scenarios 

requirements engineering 



Case Study 

Modeling Business Processes from Scenarios: Initial Situation 

Knowledge about 
the process 

single scenarios 

requirements engineering 

partially ordered runs 

formalization 



Case Study 

Formal runs in an insurance company: Single Scenarios 

Receive 
Claim 

Register 
Claim 

Assign Claim 
Expert 

Registration Check 
Damage 

Send 
Acceptance 

Letter 

Check 
Insurance 

Positive 
Evaluation 

Check 
Damage 

Send 
Refusal 
Letter 

Check 
Insurance 

Negative 
Evaluation 1 



Case Study 

Formal runs in an insurance company: Single Scenarios 

Check 
Damage 

Send 
Refusal 
Letter 

Check 
Insurance 

Send 
Refusal 
Letter 

Estimate 
Damage 

Pay 
Damage 

Negative 
Evaluation 2 

Negative 
Evaluation 3 
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Formal runs in an insurance company: Single Scenarios 
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Formal runs in an insurance company: Composition 
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Formal runs in an insurance company: Composed Run 1 
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Formal runs in an insurance company: Composed Run 2 
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Formal runs in an insurance company: Composed Run 3 
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Formal runs in an insurance company: Composed Run 4 
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Formal runs in an insurance company: Composed Run 5 
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Formal runs in an insurance company: Synthesis Result 
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