
On Negotiation as  
Concurrency Primitive 

 

Javier Esparza, Techn. Univ. München (D) 

Jörg Desel, FernUniversität in Hagen (D)  

 

1 



 
 

On Negotiation as  
Concurrency Primitive I: 

arbitrary / weakly deterministic /deterministic 
cyclic / acyclic Negotiations 

 
[CONCUR 2013] 

Javier Esparza, Techn. Univ. München (D) 

Jörg Desel, FernUniversität in Hagen (D)  

 
2 



 
 

On Negotiation as  
Concurrency Primitive II: 

arbitrary / weakly deterministic /deterministic 
cyclic / acyclic Negotiations 

 
[FOSSACS 2014] 

Javier Esparza, Techn. Univ. München (D) 

Jörg Desel, FernUniversität in Hagen (D)  

 
3 



 
Negotiation Programs 

 
[unpublished] 

Javier Esparza, Techn. Univ. München (D) 

Jörg Desel, FernUniversität in Hagen (D)  

 
4 



(Multiparty) negotiation  

5 



Negotiation as concurrency primitive 

• Concurrency theory point of view:   

Negotiation = synchronized choice  

• CSP:   𝑎𝑃1 + 𝑏𝑃2  𝑎, 𝑏  (𝑎𝑄1 + 𝑏𝑄2) 

a b 

• Petri nets: 
 

• Negotiations: a net-like concurrency model with 
   negotiation as primitive. 

6 



The Father-Daughter-Mother Negotiation  

Agents 

Father 

Daughter 

Mother 

Daughter 

Initial states 

11:00 pm 

2:00 am 

10:00 pm 

7 



The Father-Daughter-Mother Negotiation  

8 



The Father-Daughter-Mother Negotiation  

Atomic 
negotiations 

(atoms) 

9 



The Father-Daughter-Mother Negotiation  

Initial atom 

Final atom 

10 



An atomic negotiation 

Parties:  
subset of agents  

State transformers (one per outcome): 

𝑇𝑎𝑚 𝑡𝑓, 𝑡𝑑 = (𝑡𝑓, 𝑡𝑑) 

 T𝑦 𝑡𝑓, 𝑡𝑑 = {(𝑡, 𝑡) | 𝑡𝑓 ≤  𝑡 ≤  𝑡𝑑} 

 (sometimes we identify  𝑎 and  𝑇𝑎  ) 

Outcomes: 
yes, no,  

ask_mum 

Outcomes: 
yes, no,  

ask_mum 

Outcomes: 
yes, no,  

ask_mum 

11 



Semantics 

11:00 2:00 10:00 

11:00 2:00 10:00 

12:00 12:00 10:00 

12:00 12:00 12:00 

12 



Semantics 

11:00 2:00 10:00 

11:00 2:00 10:00 

11:00   2:00 10:00 

11:00 Angry! Angry! 

Beer! Angry! Angry! 

13 



The Ping-Pong Negotiation 



Negotiations as Parallel Computation Model. 
An Example: Sorting four integers 

• Four agents. 
• Internal states: integers. 
• Transformer of internal atom: 

swap integers if not in ascending 
order. 
𝑇 𝑥, 𝑦 = if  𝑦 < 𝑥 then 𝑦, 𝑥   

    else (𝑥, 𝑦)  

5 2 7 1 



Analysis of the sorting negotiation 

Sorting negotiation correct if  

• sound, and 

• summary consists of all pairs 

  𝑛1, 𝑛2, 𝑛3, 𝑛4  , 𝑛1
′ , 𝑛2

′ , 𝑛3
′ , 𝑛4

′    

s. t. 𝑛1
′ 𝑛2

′ 𝑛3
′ 𝑛4

′  is a permutation of 

 𝑛1𝑛2𝑛3𝑛4  and 𝑛1
′ ≤ 𝑛2

′ ≤ 𝑛3
′ ≤ 𝑛4

′  

𝑛1 𝑛2 𝑛3 𝑛4 

𝑛1
′  𝑛2

′  𝑛3
′  𝑛4

′  

16 



Negotiations as Parallel Computation Model. 
Parallel Bubblesort 

• Five agents. 
• Internal states: integers. 
• Transformer of internal 

binary atom: swap 
integers if not in 
ascending order. 

𝑇 𝑥, 𝑦 = if  𝑦 < 𝑥  
then 𝑦, 𝑥  

    else (𝑥, 𝑦)  

5 2 7 1 3 

17 



Negotiations as Parallel Computation Model. 
Parallel Bubblesort 

• Five agents. 
• Internal states: integers. 
• Transformer of internal 

binary atom: swap 
integers if not in 
ascending order. 

𝑇 𝑥, 𝑦 = if  𝑦 < 𝑥  
then 𝑦, 𝑥  

    else (𝑥, 𝑦)  

5 2 7 1 3 

1 2 3 5 7 
18 



Counting pairs of consecutive numbers 

• Sort three integers and count 
the number of consecutive 
pairs 

• Three agents communicate with 
a fourth Counter agent 
 

• Is it correct ...? 

5 2 4 0 

2 4 5 1 

3 2 4 0 

2 3 4 2 



Negotiations and Petri nets 

• Negotiations have the same expressive power as 
(coloured) 1-safe Petri nets. 

• However, negotiations can be exponentially more 
succint. 

20 



Negotiations → 1-safe Petri nets  



Negotiations → 1-safe Petri nets  

Meaning of a token in [𝐷, 𝑛𝐷𝑀]:  
agent 𝐷 is currently ready to engage in 
the atom 𝑛𝐷𝑀 (and no others) 

Meaning of a token in [𝑀, 𝑛𝐷𝑀, 𝑛𝑓 ]:  

agent 𝑀 is currently ready to engage in 
the atoms 𝑛𝐷𝑀 and 𝑛𝑓 (and no others) 

[𝑀, 𝑛𝐷𝑀, 𝑛𝑓 ] [𝐷, 𝑛𝐷𝑀] 

𝐷𝑀 takes place with 
outcome „yes“,  

after which D and M 
are only ready to 

engage in 𝑛𝑓 



Negotiations → 1-safe Petri nets  

• Places of the form   
    [agent, set of atoms]  ⇒ 

number of places potentially 
exponential 



Analysis problems: Soundness 

Deadlock! 



Analysis problems: Soundness 

• Large step:  
sequence of occurrences of atoms starting with 
the initial atom and ending with the final atom. 

• A negotiation is sound if 

1. Every execution can be extended to a large 
step. 

2. No useless atoms: every atom occurs in 
some large step. 

(cf. van der Aalst’s workflow nets) 

• In particular: soundness → deadlock-freedom 
25 



Analysis problems: Summarization 

• Each large step induces a relation between initial 
and final global states 

• The summary of a negotiation is  
the union of these relations  
(i.e., the whole input-output relation). 

• The summarization problem consists of,  
given a sound negotiation,  
computing its summary. 

 

26 



Analysis problems: Summarization 

Sorting negotiation correct if  

• sound, and 

• summary consists of all pairs 

  𝑛1, 𝑛2, 𝑛3, 𝑛4  , 𝑛1
′ , 𝑛2

′ , 𝑛3
′ , 𝑛4

′    

such that 𝑛1
′ 𝑛2

′ 𝑛3
′ 𝑛4

′  is permutation of 

 𝑛1𝑛2𝑛3𝑛4  and 𝑛1
′ ≤ 𝑛2

′ ≤ 𝑛3
′ ≤ 𝑛4

′  

𝑛1 𝑛2 𝑛3 𝑛4 

𝑛1
′  𝑛2

′  𝑛3
′  𝑛4

′  



Computing summaries 

• A simple algorithm to 
compute a summary:  

– Compute the LTS of the 
negotiation 

– Apply reduction rules 

Iteration 

𝑎: 𝛼 

𝑏: 𝛽 𝑐: 𝛾 

𝑑: 𝛼∗𝛽 𝑒: 𝛼∗𝛾 

Shortcut 

𝑎: 𝛼 

𝑏: 𝛽 

𝑐: 𝛼𝛽 

Merge 

𝑎: 𝛼 

𝑐: 𝛼 ∪ 𝛽 

𝑏: 𝛽 

𝑎: 𝛼 
𝑏: 𝛽 
… 

𝑒: 𝜖 

28 



Reduction rules for negotiations 

• Aim: find reduction rules  
          acting directly on negotiation diagrams   
          (instead of their transition systems). 

• Rules must:  

–preserve soundness:  
sound after iff sound before  

–preserve the summary:  
summary after equal to summary before 

• We look for local rules:  
application conditions and changes involve only  
a local neighbourhood of the application point. 

 



Rule 1: Merge 

𝑎, 𝑏 𝑎, 𝑏 𝑎, 𝑏 𝑎: 𝛼 
𝑏: 𝛽 

𝑐: 𝛼 ∪ 𝛽 𝑐 𝑐 𝑐 

𝑎: 𝛼, 
𝑏: 𝛽  

𝑐: 𝛼 ∪ 𝛽 

30 



Rule 1: Merge 

𝑎, 𝑏 

𝑎, 𝑏 𝑎, 𝑏 

𝑎 ∪ 𝑏 

𝑎 ∪ 𝑏 𝑎 ∪ 𝑏 

𝑎, 𝑏 

𝑎 ∪ 𝑏 



𝑏 𝑐 𝑏 𝑐 

𝑎 
𝑎 

𝑎 

𝑏 𝑐 

Rule 2: iteration 

𝑎: 𝛼 

𝑏: 𝛽 𝑐: 𝛾 

𝑑: 𝛼∗𝛽 𝑒: 𝛼∗𝛾 

𝑎: 𝛼 
𝑏: 𝛽 
𝑐: 𝛾 

𝑑 𝑒 𝑑 𝑒 𝑑 𝑒 𝑑: 𝛼∗𝛽 
𝑒: 𝛼∗𝛾 

32 



𝑎 𝑎 

𝑏 𝑏 

𝑎 ⋅ 𝑏 𝑎 𝑏 

Rule 3: shortcut 

𝑎 

𝑏 

𝑎 ⋅ 𝑏 

Unsound 

Sound 



𝑎 
𝑎 𝑎 

𝑏 𝑏 

Rule 3: shortcut 

𝑎 ⋅ 𝑏 𝑎 ⋅ 𝑏 𝑎 

1. Orange atom 
enables white atom 
unconditionally 

𝑎 

𝑏 

𝑎 ⋅ 𝑏 

Unsound 

Sound 



Rule 3: shortcut 

𝑎 
𝑎 𝑎 

𝑏 𝑏 

𝑎 ⋅ 𝑏 𝑎 ⋅ 𝑏 𝑎 

1. Orange atom enables 
white atom 
unconditionally. 

2. No forks from orange 
to white. 

3. One more technical 
condition (see paper). 

𝑎 

𝑏 

𝑎 ⋅ 𝑏 

𝑎 
𝑎 𝑎 

𝑏 𝑏 



Rule 4: useless arc 

Agent 1 

Agent 2 

𝑎 𝑎 

𝑎 𝑎 



 

• A set of rules is complete for a class if it reduces all 
negotiations in the class to atomic negotiations.  

• A complete set of rules is polynomial if every sound 
negotiation with k atoms is reduced to an atom by 𝑝(𝑘) 
rule applications, for some polynomial p. 

 

 

Completeness and polynomiality 

Theorem [CONCUR 13]: deciding if a giving pair of global 
states belongs to the summary of a given negotiation is 
PSPACE-complete, even for every simple transformers. 
  
Polynomiality and completeness results very unlikely for 
arbitrary negotiations. 
 37 



Deterministic agents and negotiations 

• An agent is 
deterministic if it is 
never ready to engage 
in more than one 
atom („no forks“). 

• A negotiation is 
deterministic if every 
agent is deterministic. 

 

non-deterministic 
38 



Deterministic agents and negotiations 

• An agent is 
deterministic if it is 
never ready to engage 
in more than one 
atom („no forks“). 

• A negotiation is 
deterministic if every 
agent is deterministic. 

 
deterministic 



Deterministic agents and negotiations 

• An agent is 
deterministic if it is 
never ready to engage 
in more than one 
atom („no forks“). 

• A negotiation is 
deterministic if every 
agent is deterministic. 

 

deterministic 

40 



Deterministic agents and negotiations 

• An agent is 
deterministic if it is 
never ready to engage 
in more than one 
atom („no forks“). 

• A negotiation is 
deterministic if every 
agent is deterministic 

 

deterministic 



• Theorem [CONCUR 13]:  

The shortcut and merge rules are  

complete and polynomial for        

acyclic deterministic negotiations 

• Theorem [FOSSACS 14]:  

The shortcut, merge, and iteration rules are 

complete and polynomial for  

arbitrary deterministic negotiations  

Deterministic negotiations: Results 

42 



Weakly deterministic negotiations 

• A negotiation is 
weakly deterministic if 
every atom has a 
deterministic party 

 

weakly deterministic 



Weakly deterministic negotiations 

• A negotiation is 
weakly deterministic if 
every atom has a 
deterministic party 

 

weakly deterministic 



Weakly Deterministic Negotiations: Results 

• Theorem [CONCUR 13]:  

The shortcut, merge, and useless arc rules are 

complete for 

acyclic, weakly deterministic  negotiations. 

 



 

 

 

 

 

• Theorem [FOSSACS 14]:  

The shortcut, merge, and iteration rules are 

complete and polynomial for  

arbitrary deterministic negotiations  

Deterministic negotiations: Results 

46 



• A loop is a minimal 
firing sequence 
leading from a 
reachable marking 
to itself. 

• A loop fragment is 
the subnegotiation 
that „occurs in the 
loop“  

A Proof Sketch: Loop fragments 

47 



• A loop is a minimal 
firing sequence 
leading from a 
reachable marking 
to itself. 

• A loop fragment is 
the subnegotiation 
that „occurs in the 
loop“  

A Proof Sketch: Loop fragments 

48 



• A loop is a minimal 
firing sequence 
leading from a 
reachable marking 
to itself. 

• A loop fragment is 
the subnegotiation 
that „occurs in the 
loop“  

A Proof Sketch: Loop fragments 

49 



• Lemma: every loop 
fragment of a sound 
deterministic 
negotiation has a 

synchronizer  

A Proof Sketch: Loop fragments 

Synchronizers 

50 



• Lemma: every loop 
fragment of a sound 
deterministic 
negotiation has a 

synchronizer  

A Proof Sketch: Loop fragments 

loop has no 
synchronizer, but  

negotiation is  
not deterministic  

51 



• Almost acyclic loop 
fragment: loop fragment 
that becomes acyclic 
after „cutting it along a 
synchronizer“ 

• Lemma: every cyclic, 
sound and deterministic 
negotiation contains an 
almost acyclic loop. 

A Proof Sketch: Loop fragments 

52 



• Almost acyclic loop 
fragment: loop fragment 
that becomes acyclic 
after „cutting it along a 
synchronizer“ 

• Lemma: every cyclic, 
sound and deterministic 
negotiation contains an 
almost acyclic loop 
fragment. 

A Proof Sketch: Loop fragments 

53 



• Theorem [CONCUR 13]: Acyclic sound 
and deterministic negotiations can be 
reduced using the shortcut and merge 
rules.  

• Corollary: loop fragments can be 
reduced to a „self-loop“ using the 
shortcut and merge rules. The self-loop 
can be reduced with the iteration rule. 

A Proof Sketch: Loop fragments 

54 



• Problem: the reduction of a loop fragment to a 
self-loop produces „side-effects“ 

A Proof Sketch: Polynomiality 

• Careful analysis required to ensure 
polynomialty. 55 



• Theorem: a sound and deterministic negotiation 
with 𝑛 atoms and 𝑘 outcomes can be reduced 
by means of 𝑂(𝑛4𝑘) applications of the 
shortcut, merge, and iteration rules. 

 

• Conjecture: 𝑂(𝑛2𝑘) applications suffice. 

A Proof Sketch: Polynomiality 

56 



New paper: Negotiation Programs  

57 

How can we implement negotiations? 

 

How can we implement sound negotiations? 
(correct by construction)  



Negotiation Programs: an example  

58 

n0: discuss a proposal? 

n1 : team A makes plan. 

n2 : team B makes plan. 

n3 : plans are consistent? 

nf : termination 

 



Negotiation Programs: an example 

59 



Negotiation Programs: an example 

60 



Semantics of negotiations:  
Mazurkiewicz traces 

61 



62 

Semantics of negotiations:  
Mazurkiewicz traces 



63 

Semantics of negotiations:  
Mazurkiewicz traces 



Mazurciewicz traces with concatenation 

64 

Independence of  negotiation atoms 
(actually outcomes):  

disjoint sets of participants 



A grammar for negotiation programs 

65 

set of agents X 

X‘ is a subset of X 

Y U Z = X 

concatenation 

for each X a 
name space 



Semantics of negotiation programs 

66 

the empty negotiation 

end-
alternative 

loop-
alternative 

trace 
concatenation 



Boxes 

67 



Box for e 

68 



Conatenation of boxes 

69 



The alternative operator 

70 

end-
alternative 

loop-
alternative 



Theorem:  

• for each negotiation program there is an 
equivalent sound and deterministic negotiation 
which has almost the same size. 

• for each sound and deterministic negotiation 
there is an equivalent negotiation program with 
the same set of agents. 

proof based on reduction results 

Equivalence result 

71 

equivalence:  
same Mazurciewicz traces 



A concrete progamming language 

72 



concrete vs abstract 

73 

concrete:  

abstract:  



a final example 

74 



a final example 

75 



a final example 

76 



On Negotiation as  
Concurrency Primitive 

 

Javier Esparza, Techn. Univ. München (D) 

Jörg Desel, FernUniversität in Hagen (D)  

 

77 


