On Negotiation as
Concurrency Primitive

Javier Esparza, Techn. Univ. Minchen (D)
Jorg Desel, FernUniversitat in Hagen (D)

On Negotiation as

Concurrency Primitive |I:

arbitrary / weakly deterministic /deterministic
cyclic / acyclic Negotiations

[CONCUR 2013]

Javier Esparza, Techn. Univ. Miinchen (D)
Jorg Desel, FernUniversitat in Hagen (D)

On Negotiation as

Concurrency Primitive Il:

arbitrary / weakly deterministic /deterministic
cyclic / acyclic Negotiations

[FOSSACS 2014]

Javier Esparza, Techn. Univ. Miinchen (D)
Jorg Desel, FernUniversitat in Hagen (D)

Negotiation Programs

[unpublished]

Javier Esparza, Techn. Univ. Miinchen (D)
Jorg Desel, FernUniversitat in Hagen (D)

(Multiparty) negotiation

Negotiation as a metaphor for distributed problem solving

R Davis, RG Smith - Artificial intelligence, 1983 - Elsevier

;Automated neqotiation: prospects, methods and soton.ac.
‘challenges

QoNR Jennings, P Faratin, AR Lomuscio... - ... and Negotiation, 2001 - Springer
ﬂiglAUTGMATED NEGOTIATION: PROSPECTS, METHODS AND CHALLENGES Group e

TF /
and Negotiation 10: 199-215, 2001 © 2001 Kluwer Academic Publishers. Printed in the

AD jNetherlands 1
]

| 'lBook] Rules of encounter: designing conventions for automated
: negntlatlnn among computers

#JS Rosenschein - 1994 - books.google.com

€ Rules of Encounter applies the general approach and the mathematical tools of game theory
| r'in a formal analysis of rules (or protocols) governing the high-level behavior of interacting
i (heterogeneous computer systems. It describes a theory of high-level protocol design that ...

P! Cited by 1760 Related articles All 8 versions Import into BibTeX More”
negotiauon-paseda proiocols, meta-aata, INTormanon aiSSeminaton 1. INTroauction ...

Cited by 1035 Related articles All 22 versions Import into BibTeX More™

Decision ted ...

Negotiation as concurrency primitive

* Concurrency theory point of view:
Negotiation = synchronized choice

* CSP: (aP; + bP;) [{a, b}| (aQ1 + bQ5)

* Petri nets:

a b

* Negotiations: a net-like concurrency model with
negotiation as primitive.

The Father-Daughter-Mother Negotiation

Agents Initial states

/@ Father A@; 11:00 pm
g Daughter g 2:00 am

% Mother @

10:00 pm

The Father-Daughter-Mother Negotiation

The Father-Daughter-Mother Negotiation

Atomic
negotiations M
(atoms)
y,n

The Father-Daughter-Mother Negotiation

T G @ M

Initial atom

Final atom

An atomic negotiation

Parties:
subset of agents

Outcomes:
yes, no, m
ask_mum \

y,n,am

State transformers (one per outcome):
Tam (tf, td) = (tf, td)
T,(tf,td) = {(t,t) | tf <t < td}

(sometimes we identify a and T,)

Semantics

11:00
11:00
12:00
12:00

2:00
2:00
12:00
12:00

10:00
10:00
10:00
12:00

12

Semantics

11:00
11:00
11:00
11:00

Beer!

2:00

2:00

2:00
Angry!
Angry!

10:00
10:00
10:00
Angry!
Angry!

13

The Ping-Pong Negotiation

Negotiations as Parallel Computation Model.
An Example: Sorting four integers

5 2 7 1

* Four agents.

* Internal states: integers.

* Transformer of internal atom:
swap integers if not in ascending
order.

T(x,y) =if y < x then (y, x)
else (x,y)

1\‘/—‘-"

Analysis of the sorting negotiation

ny nNy; N3 Ny

Sorting negotiation correct if

e sound, and

 summary consists of all pairs

((n1) le, n3)n4)) (nfll) n’2; nélnil-))

s. t. nyn,nsn, is a permutation of

nyn,nsn, andny < n, < n; < n,

16

Negotiations as Parallel Computation Model.
Parallel Bubblesort

5 2 7 1 3

* Five agents.
* Internal states: integers.
e Transformer of internal
binary atom: swap
integers if not in
ascending order.
T(x,y)=if y<ux
then (y, x)
else (x,y)

Negotiations as Parallel Computation Model.
Parallel Bubblesort

5 2 7 1 3

* Five agents.
* Internal states: integers.
e Transformer of internal
binary atom: swap
integers if not in
ascending order.
T(x,y)=if y<ux
then (y, x)
else (x,y)

1 2 3 5 7

Counting pairs of consecutive numbers

Counter

e Sort three integers and count
the number of consecutive
pairs

* Three agents communicate with
a fourth Counter agent

e |s it correct...?

Negotiations and Petri nets

* Negotiations have the same expressive power as
(coloured) 1-safe Petri nets.

* However, negotiations can be exponentially more
succint.

Negotiations - 1-safe Petri nets

Negotiations - 1-safe Petri nets

[D Fi'n]

D, npum] M, {nDM» nf}]

Meaning of a token in [D, npy,]:
agent D is currently ready to engage in
the atom np,, (and no others)
Meaning of a token in [M, {nDM, nf}]:
agent M is currently ready to engage in
the atoms np)y and ng (and no others)

DM takes place with
outcome ,yes”,
after which D and M
are only ready to
engage in ng

Negotiations - 1-safe Petri nets

[D. .fi'r|]

* Places of the form
[agent, set of atoms] =
number of places potentially
exponential

Analysis problems: Soundness

L i

Tl

no

Analysis problems: Soundness

* Large step:
sequence of occurrences of atoms starting with
the initial atom and ending with the final atom.
* A negotiation is sound if
1. Every execution can be extended to a large
step.
2. No useless atoms: every atom occurs in
some large step.
(cf. van der Aalst’s workflow nets)

* |n particular: soundness - deadlock-freedom

Analysis problems: Summarization

Each large step induces a relation between initial
and final global states

The summary of a negotiation is
the union of these relations
(i.e., the whole input-output relation).

The summarization problem consists of,
given a sound negotiation,
computing its summary.

Analysis problems: Summarization

ny nNy; N3 Ny

Sorting negotiation correct if

e sound, and

 summary consists of all pairs

((n1) le, n3)n4)) (nfll) n’2; nélnil-))

such that nyn,n3n, is permutation of

nyn,nsn, andny < n, < n; < n,

Computing summaries

* Asimple algorithm to
compute a summary:

— Compute the LTS of the
negotiation

— Apply reduNg

S |

Iteration Shortcut

28

= KR

Reduction rules for negotiations

* Aim: find reduction rules
acting directly on negotiation diagrams
(instead of their transition systems).

e Rules must:

— preserve soundness:
sound after iff sound before

—preserve the summary:
summary after equal to summary before

* We look for local rules:
application conditions and changes involve only
a local neighbourhood of the application point.

Rule 1: Merge
W

a,b

a,b

@

O

a,b

C

I8
=™ |

c:aUpf

a,b

O ¢ O-

auUb

&

Rule 1: Merge

&

O

W)
a,b
e

Q—OTQ
- é—4> &

&

a,b

auUb

Rule 2: iteration

a

a (% fe :f)

14 b/ c\ bl c\ b|c

vy d! eg dE 65 d; e§ d:a:ﬁ
e:a’y

TRES RS
< ™ 8

4

4!

d:a”

=

Rule 3: shortcut

Rule 3: shortcut

a .

Rule 3: shortcut

-ange atom enables
hite atom
wconditionally.

) forks from orange
white.

1e more technical
ndition (see paper).

Rule 4: useless arc

a
! U !
Tlf
@ Agentl “
O Agent2

Completeness and polynomiality

* Asetofrulesis complete for a class if it reduces all
negotiations in the class to atomic negotiations.

A complete set of rules is polynomial if every sound
negotiation with k atoms is reduced to an atom by p (k)
rule applications, for some polynomial p.

Theorem [CONCUR 13]: deciding if a giving pair of global
states belongs to the summary of a given negotiation is
PSPACE-complete, even for every simple transformers.

Polynomiality and completeness results very unlikely for
arbitrary negotiations.

Deterministic agents and negotiations

* An agentis
deterministic if it is
never ready to engage
in more than one
atom (,,no forks“).

* A negotiation is
deterministic if every
agent is deterministic.

non-deterministic

38

Deterministic agents and negotiations

* An agentis
deterministic if it is
never ready to engage
in more than one
atom (,,no forks“).

* A negotiation is
deterministic if every
agent is deterministic.

deterministic

Deterministic agents and negotiations

* Anagentis O o e
deterministic if it is
() ON®
never ready to engage
in more than one n O 0 1
atom (,,no forks®). A
* A negotiation is
O e O O—

deterministic if every
agent is deterministic. deterministic

40

Deterministic agents and negotiations

* An agentis
deterministic if it is
never ready to engage
in more than one
atom (,,no forks“).

* A negotiation is
deterministic if every

'l
agent is deterministic

deterministic

Deterministic negotiations: Results

* Theorem [CONCUR 13]:
The shortcut and merge rules are

complete and polynomial for

acyclic deterministic negotiations
* Theorem [FOSSACS 14]:
The shortcut, merge, and iteration rules are

complete and polynomial for

arbitrary deterministic negotiations

42

Weakly deterministic negotiations

* A negotiation is
weakly deterministic if
every atom has a
deterministic party

¥

¢ 7

st st

weakly deterministic

Weakly deterministic negotiations

... Counter
@
f

* A negotiation is
weakly deterministic if
every atom has a
deterministic party

C O

Visan
Ty

weakly deterministic

Weakly Deterministic Negotiations: Results

e Theorem [CONCUR 13]:
The shortcut, merge, and useless arc rules are
complete for

acyclic, weakly deterministic negotiations.

Deterministic negotiations: Results

* Theorem [FOSSACS 14]:
The shortcut, merge, and iteration rules are

complete and polynomial for

arbitrary deterministic negotiations

46

A Proof Sketch: Loop fragments

 Aloop is a minimal () (D) M
firing sequence st st st

leading from a
reachable marking F=D
to itself. an

A Proof Sketch: Loop fragments

* Aloopisaminimal
firing sequence
leading from a
reachable marking
to itself.

* Aloop fragment is
the subnegotiation
that ,occurs in the
loop“

A Proof Sketch: Loop fragments

 Aloopisa minimal
firing sequence
leading from a
reachable marking
to itself.

* Aloop fragment is
the subnegotiation
that ,occurs in the
loop“

A Proof Sketch:

 Lemma: every loop
fragment of a sound
deterministic
negotiation has a

synchronizer

Synchronizers

Loop fragments

(

50

A Proof Sketch: Loop fragments

 Lemma: every loop
fragment of a sound
deterministic
negotiation has a

synchronizer

loop has no
synchronizer, but
negotiation is
not deterministic

A Proof Sketch: Loop fragments

* Almost acyclic loop
fragment: loop fragment a ¢ ¢
that becomes acyclic] |
after ,cutting it along a
synchronizer”

A Proof Sketch: Loop fragments

* Almost acyclic loop
fragment: loop fragment
that becomes acyclic

after ,cutting it along a e
. 4
synchronizer” /
. [~
* Lemma: every cyclic, BN D "
sound and deterministic (e) |

!
o S

fragment. -

negotiation contains an \

. (I il ,.-"'I

almost acyclic loop \) /P
——O0—0

53

A Proof Sketch: Loop fragments

* Theorem [CONCUR 13]: Acyclic sound P
and deterministic negotiations can be / /
reduced using the shortcut and merge {'

rules. \ =<
* Corollary: loop fragments can be \\\

reduced to a ,self-loop” using the
shortcut and merge rules. The self-loop

e)
can be reduced with the iteration rule. ///
\\\

r'—
L

A Proof Sketch: Polynomiality

* Problem: the reduction of a loop fragment to a
self-loop produces ,side-effects”

e Careful analysis required to ensure
polynomialty.

55

A Proof Sketch: Polynomiality

 Theorem: a sound and deterministic negotiation
with n atoms and k outcomes can be reduced
by means of O(n*k) applications of the
shortcut, merge, and iteration rules.

e Conjecture: 0(n*k) applications suffice.

New paper: Negotiation Programs

How can we implement negotiations?

How can we implement sound negotiations?
(correct by construction)

Negotiation Programs: an example

ny: discuss a proposal?
n,:team A makes plan.
n,: team B makes plan.
n,: plans are consistent?

n;: termination

Negotiation Programs: an example

agent ai.,ao,as,aq
actions y,n,a,r:{ai,...,as};p:{ar,a2};p" : {as,as}

do [[y: (pllp)o
doa:end [|r:(p||p') loop od end

| n:end
od

59

Negotiation Programs: an example

Ny

agent ai.,ao,as,aq
actions y,n,a,r:{ai,...,as};p:{ar,a2};p" : {as,as}

do [l y: (pllp)o
doa:end [|r:(p || p’) loop od end

| n:end

od

Semantics of negotiations:
Mazurkiewicz traces

Semantics of negotiations:
Mazurkiewicz traces

Semantics of negotiations:
Mazurkiewicz traces

Mazurciewicz traces with concatenation

Independence of negotiation atoms
(actually outcomes):

disjoint sets of participants

64

A grammar for negotia

prog(X

endalt[X] ::= name[X]: prog|
loopalt|X] ::= name[X]: prog[X
name[X] ::= element of Rx
foreach X a

=€
do {[| endalt[x
proglY] o prog|Z]

Name Space

set of agents

13T {][] loopalt[x]}" od

X'l end

'l loop

YUZ=X

concatenation

X‘is a subset of X

Semantics of negotiation programs

the empty negotiation

le] = {[e]}
(do EDE} _El L% od] = (U L";{]]) (U[[EX]])
la: Px:] = {[a]} - [Px/]
[Py o Pz} = [Py] - [Pz] t
concatenation
end- loop-

alternative alternative

67

Box for ¢

g :«:_)_(\

~

I i
T (| —

v

Conatenation of boxes

ap a2 as
ar az az Qs Q_Q_O
B,
B, O By —
=5 A=A B,

The alternative operator

(1 o (Lo (s
" h ' ~

B B
o0 OO
end- loop-

alternative alternative

Equivalence result

equivalence:
same Mazurciewicz traces
Theorem:
e for each negzliation prog .nere is an

equivalent sound and d . ministic negotiation
which has almost the .ine size.

e for each sound and ueterministic negotiation
there is an equivalent negotiation program with
the same set of agents.

proof based on reduction results

A concrete progamming language

prog[x] ::= skip
comm[x]
do {[] endgcix1}™ {[] loopgeix1}* od

prog[y] o prog[Z]

endge[X] == guard[X]: prog[x'] end

loopgcex] ::= guard[X]: prog[x'] loop

guard[X] ::= Guard over the variables of the agents of X
comm[X] ::= Command over the variables of the agents of X

(where neither guards nor commands have to use all variables of the respective
sets X of agents).

72

concrete vs abstract

concrete: agent a var x = 1: int
do [| =(x > 1) :z =2 —1 loop

| (x < 1) : skip end
od

agent a
actions a,b,c: {a}

abstract:

do [| —a :b loop

] ¢ : end
od

73

a final example

agent a1 var z; :int

agent a, var z, :int

1 do [| ~(z1 =29 =23 =24) :

2 {1,290 := f(x1,22) || @3, 24 :=g(x3,24)} 0
3 do|] (z2 = x3):end

4] (z2 # x3):

5 xo,x3 = h(xz9,x3) 0

6 {z1,29 = f(z1,22) || 23,24 = g(23,24)}
7 end

8 od loop

9 | (21 =22 =23 =24) : end

10 od

74

a final example

a final example

agent a; var rp :int

agent a, var x, :int

1 do [| =(zy =2y =23 =2y) :

2 {z1, 22 1= f(z1,22) || 23,24 := g(x3,74)} <
3 do[] (z2 = x3):end

4 [(z2 # x3):

5 xo,x3 = h(z2,23) 0

6 {z1,20 = f(z1,22) || 23,24 1= g(23, 24
7 end

8 od loop

9]| (z1 =20 =23 =24) : end

10 od

76

On Negotiation as
Concurrency Primitive

Javier Esparza, Techn. Univ. Minchen (D)
Jorg Desel, FernUniversitat in Hagen (D)

77

