# On place invariants of nested Petri nets.

Speaker: Leonid Dworzanski Scientific advisor: Irina A. Lomazova

National Research University Higher School of Economics

April 11, 2015

### Outline

What's the plan?
What's the plan?
P-invariants for classical Petri nets
Problem Statement
Problem Statement

- Example
- 2 Definitions
- 3 Application
- **4** Conclusion



#### What's the plan?

What is a P-invariant of a classical Petri net?

What other types of P-invariants exist?

How to define them for NP-nets?

#### What's the plan?

# What's the plan?

- What are P-invariants for classical Petri nets?
- What other types of P-invariants exist?
- How to define them for NP-nets?

P-invariants for classical Petri nets

## P-invariants for classical Petri nets

• What are P-invariants for classical Petri nets?

```
http://www.informatik.uni-hamburg.de/TGI/PetriNets/introductions/aalst/
```

#### Problem Statement

### Problem Statement

Invariants are defined for almost every Petri net calculus.

- Classical P/T nets;
- CP-nets (M. Schiffer);
- Coloured Petri nets (K. Jensen);
- Algebraic Petri nets (W. Reisig, K. Schmidt);
- NP-nets (not yet)

#### Problem Statement

### Problem Statement

Invariants have to be defined for NP-nets.

- How to defined them?
- Shall we take into account different levels?
- Will the invariants of NP-net components be compositional?
- Are such compositions are only possible invariants?
- Shall they be number- or term-valued functions?
- etc



## Outline

What's the plan?
What's the plan?
P-invariants for classical Petri nets
Problem Statement

- 1 Example
- 2 Definitions
- 3 Application
- 4 Conclusion



# Forecasting system





 $E_2$  — Database midlet :





## Outline

What's the plan?
What's the plan?
P-invariants for classical Petri nets
Problem Statement
Problem Statement

- 1 Example
- 2 Definitions
- 3 Application
- 4 Conclusion



### NP-net

### Definition

Lab is a set of transition labels.  $N_1, \ldots, N_k$  are CPNs, where all transitions are labeled with  $Lab \cup \{\tau\}$ .

NP-net is a tuple  $NP = \langle N_1, \dots, N_k, SN \rangle$ , where  $N_1, \dots, N_k$  - element nets, and SN - system net.  $SN = \langle P_{SN}, T_{SN}, F_{SN}, \gamma, \Lambda \rangle$ 

- constants or multiple instances of the same variable are not allowed in input arc expressions of t;
- $oldsymbol{2}$  each variable in an output arc expression for t occurs in one of the input arc expressions of t.

### Problem Statement

- How to defined them?
- What will we gain from the definition?
- How to calculate them?
- What properties do these things have?

### NP-net invariant

### Definition

 $NP = \langle N_1, \dots, N_k, SN \rangle$  is an NP-net.

 $w_t: P_{SN} \to \mathbb{Z}$  and  $w_m: P_{SN} \to \mathbb{Z}$  are weight functions.

For each place  $p \in P_{SN}$  typed with the element net N, we assign the weight function  $w_p$ , that maps  $P_N$  into  $\mathbb{Z}$ .

Let  $\hat{w_p}: \mathcal{M}(N) \to \mathbb{Z}$  be the linear extension of  $w_p$  to the markings of N defined in the standard way

$$orall m_p \in \mathcal{M}(N)$$
:  $\hat{w}_p(m_p) = \sum\limits_{q \in P_N} (m_p(q)w_p(q))$  (i.e. weighted sum).

The weight function

$$W_{NP}(m) = \sum_{p \in P_{SN}} \sum_{\alpha \in m(p)} (w_t(p) + w_m(p) \hat{w}_p(m_\alpha))$$

4) d (

## Outline

What's the plan?
What's the plan?
P-invariants for classical Petri nets
Problem Statement

- Example
- 2 Definitions
- 3 Application
- 4 Conclusion



### Problem Statement

- How to defined them?
- What will we gain from the definition?
- How to calculate them?
- What properties do these things have?

# **Properties**

Following properties can be inferred from the invariants of the NP-net:

- the system can simultaneously send no more than 3 requests to the external index service.
- we always return license token before forecasting
- queues sizes are finite and = number of license tokens
- system is bounded (except user's query)
- there won't be dangling request in updating indices section
- if the index 1 is outdated, then forecasting agent may enter updating state only with license token.



Example Definitions Application Conclusion

# Forecasting system





 $E_3$  — Indices updater :



# Interesting points

- all weightening functions are not necessary invariants;
- if they are invariants their composition is not necessary an invariant;
- invariants are distributed among the structure of an NP-net;
- a flow of tokens is "distributed" among levels.

Problem Statement

End of Part 1...



## Outline

What's the plan?
What's the plan?
P-invariants for classical Petri nets
Problem Statement

- 1 Example
- 2 Definitions
- 3 Application
- **4** Conclusion



## Conclusion

- NP-invariants are weighten sum of weighten sum of ...;
- NP-invariants capture flow among levels;