
Checking Conformance between
Colored Petri Nets and Event Logs?

Julio C. Carrasquel1, Khalil Mecheraoui1,2, and Irina A. Lomazova1

1 National Research University Higher School of Economics,
Myasnitskaya ul. 20, 101000 Moscow, Russia

jcarrasquel@hse.ru, k_mecheraoui@esi.dz, ilomazova@hse.ru
2 University of Constantine 2 — Abdelhamid Mehri,

Nouvelle ville Ali Mendjeli BP : 67A, 25000 Constantine, Algeria

Abstract. Event logs of information systems consist of recorded traces,
describing executed activities and involved resources (e.g., users, data
objects). Conformance checking is a family of process mining techniques
that leverage such logs to detect whether observed traces deviate w.r.t
some specification model (e.g., a Petri net). In this paper, we present a
conformance checking method using colored Petri nets (CPNs) and event
logs. CPN models allow not only to specify a causal ordering between
system activities, but also they allow to describe how resources must be
processed upon activity executions. By replaying each trace of an event
log on top of a CPN, we present how this method detects: (1) control-
flow deviations due to unavailable resources, (2) rule violations, and (3)
differences between modeled and real produced resources. We illustrate in
detail our method using the study case of trading systems, where orders
from traders must be correctly processed by a platform. We describe
experimental evaluations of our method to showcase its practical value.

Keywords: Process mining, conformance checking, Petri nets, colored
Petri nets, trading systems, order books.

1 Introduction

Conformance checking is a family of process mining techniques to diagnose
whether or not a system process is being executed as described by its speci-
fication model [1, 3]. Two main inputs are considered in such methods: event
logs and process models. On the one hand, an event log describes real behavior
of a process. It consists of recorded traces, each of them consisting of executed
activities and resources involved in such executions. Resources may be users or
data objects processed by a system. On the other hand, a process model allows
to describe expected behavior of a system process, based on its specification. Re-
garding the model notation, conformance checking methods consider Petri nets
— a formalism for modeling and analysis of concurrent distributed systems [15].

? This work is supported by the Basic Research Program at the National Research
University Higher School of Economics.

In particular, Petri nets allow to specify the control-flow of a system, that is,
a causal ordering between system activities (e.g., activity a must be followed
by b). Thus, conformance checking methods use Petri nets and event logs to
determine, for instance, to which degree the modeled control-flow is being com-
plied by the real system, as observed in the recorded traces. For example, “a
loan approval was executed, but it was not inspected before, and this must not
happen according to the model”. This is why conformance checking has become
a research subject of interest in several application domains, i.e., for auditing
business processes [20].

Nonetheless, most of the conformance checking methods merely focus on
the control-flow aspect (i.e., only considering event activities), thereby neglect-
ing other valuable information recorded in event logs, for example, processed
resources. This imposes severe limitations in study cases where the system’s cor-
rect execution can be only determined by checking involved resources in events
(i.e., “a trade can be executed if a buy order and a sell order are available”).

To address such limitation, certain conformance methods propose the use of
enriched models, such as in [13], where Petri nets with data (DPN) are employed.
In DPNs, data variables are attached to transitions (representing activities), and
thus this model allows to specify data constraints on activity executions (for
instance, “a loan is rejected if the requested amount is higher than a threshold”).
In DPNs, however, the system’s control-flow is still defined separately and data
objects play a minor role, being statically attached to transitions. In consequence,
a conformance checking method with DPNs does not allow to clearly validate
whether dynamic resources are evolving as expected, while they are processed by
the system, nor how new resource states may affect the overall system execution.

In this paper, we present a conformance checking method between event logs
and colored Petri nets (CPN) [11] — a Petri net extension resembling the object-
oriented paradigm. In CPNs, tokens carry values, representing object instances
of some classes (called colors). Besides, arc expressions adjacent to transitions
allow to specify how objects are transformed upon activity executions. Our con-
formance method is based on replaying each trace of an event log on top of a
CPN model. When replaying each trace, the distinct observed resources (object
instances) are injected as tokens in the model. Then, for each event of a trace,
we try to fire a transition associated to the activity executed in the event, and
selecting as input tokens the ones which represent the real resources observed
in the event. Following such scheme, we explain in this work how our method
can detect three kinds of deviations: (1) control-flow deviations caused by the
absence of resources (i.e., it is not possible to fire a transition with the resources
indicated in the event); (2) rule violations (e.g., according to priority rules on
transitions, some resources must be served first); and (3) differences between
modeled and real resources regarding their evolution along a trace (for instance,
after a transition firing, the resulting values of produced tokens must be equal
to their corresponding resources observed in an event).

For this method, we consider a specific class of CPNs with certain restric-
tions. For instance, all tokens in a model must be unique (e.g., using identifiers).

Also, each token involved in a transition firing must be of a different class. These
restrictions come to be natural in various information systems where, for exam-
ple, objects can be distinguished. In the next sections, we explain in detail these
restrictions, describing how they guarantee a correct and efficient replay.
We illustrate our method throughout the paper with the study case of trading
systems [9]. These systems receive buy/sell orders from agents to trade securities
(company shares), placing them in lists called order books. Then, orders in a same
book are matched to produce trades. In a system, there can be as many order
books as securities are traded (e.g., an order to buy 3 stocks of the company
yandex is placed in the order book “yandex”). Event logs of these systems consist
of traces, each of them related to a trading session in an order book (see Fig. 1).Sheet1

Page 1

trace timestamp activity buy order sell order
id tsub price qty id tsub price qty

001 09:13:07.536 submit buy order Wpl 09:13:07.536 22.00 3
001 09:13:07.537 new buy order Wpl 09:13:07.536 22.00 3
001 09:13:07.544 submit sell order Wpm 09:13:07.544 19.00 1
001 09:13:07.545 new sell order Wpm 09:13:07.544 19.00 1
001 09:13:07.565 submit sell order Wpn 09:13:07.565 21.00 3
001 09:13:07.566 new sell order Wpn 09:13:07.565 21.00 3
001 09:13:07.581 trade 2 Wpl 09:13:07.536 22.00 2 Wpm 09:13:07.544 19.00 0

001 09:13:07.582 trade 3 Wpl 09:13:07.536 22.00 0 Wpn 09:13:07.565 21.00 1
001 09:13:11.236 discard sell order Wpn 09:13:07.565 21.00 0

Fig. 1: Log trace of a trading system. Each row shows an activity fired and orders
involved, with attributes id, arrival time (tsub), price and quantity (qty).

Given a CPN modeling a trading session, and an event log of real sessions (i.e., see
Fig. 2), our method detects the following deviations: (1) control-flow errors due
to absent resources, e.g., trades occurred with unavailable orders, (2) violation
of priority rules when serving orders, and (3) differences between modeled and
real produced resources (e.g., an order attribute was incorrectly modified).

...

agents

conformance checking
method

CPN model of a trading session
in an order book

trading session 1

order
book 1

submit
orders

output
deviations in

traces

trading session 2

order
book 2

order
book s

trading session s

Event log
of trading sessions.

t

recording

Fig. 2: Validating trading sessions via conformance checking with CPNs.

The remainder of this paper is structured as follows. In Section 2, we introduce
CPNs, its formal definition and execution semantics. In Section 3, we describe
event logs. In Sections 4 and 5, we describe our conformance checking method,
its implementation and experimental validation. In Section 6, we conclude our
paper with a discussion on the novelty of our contribution. Also, we briefly
mention how our method compares to other conformance proposals, as well as
methods within the sphere of data science.

2 Colored Petri Nets

In this section, we present colored Petri nets (CPN), using as an example the
model of a trading session in an order book. Then, we introduce the formal defi-
nition of CPNs and their execution semantics, as well as we consider some model
restrictions. In general, Petri nets consist of two kinds of nodes: transitions mod-
eling activities, and places storing tokens, which model buffers with resources.
Pictorially, transitions and places are drawn as boxes and circles respectively. Di-
rected arcs connect input places to transitions, and transitions to output places.
Activity executions and resource processing are modeled by transition firings,
consuming and producing tokens in input and output places respectively.

Colors and tokens. CPNs are an extension of Petri nets, where tokens carry
values of some types. Formally, a token is a tuple (d1, ..., dn) ∈ D1 × ... × Dn,
s.t. {D1, ..., Dk} ⊆ D are data types from a data type domain of interest D. A
cartesian product D1 × ...×Dn between any combination of data types from D
is a color. We denote by Σ the set of all colors that can be obtained from D.
Resembling the object-oriented paradigm, colors denote object classes, whereas
tokens are object instances. For example, we define buy and sell order classes
with colors OB = OB×N×R+×N and OS = OS×N×R+×N, where OB and OS

are sets of order identifiers, N is the set of natural numbers, and R+ is the set
of positive real numbers. In Fig. 3, tokens stored in p1 and p2 represent buy and
sell orders, e.g., the token (b1, 1, 22.0, 3) in place p1 models a buy order with
identifier b1, submitted in time 1, to buy 3 stocks at a price per unit of 22.0.

Places. Places store tokens of a specific color. We define a function color,
mapping each place to a color in Σ. In Fig. 3, places p1 and p2 are the initial
places for incoming buy and sell orders, so color(p1) = OB and color(p2) = OS.
Places p3 and p4 denote buffers of buy/sell orders, received by the platform,
whereas places p5 and p6 model the buy and sell side of an order book. Places
p7 and p8 store filled orders that traded successfully, and finally places p9 and
p10 store canceled orders.

Arc Expressions. Arcs are labeled with expressions to formally indicate how
tokens are processed upon transition firings. We consider a language of expres-
sions L. Each expression is of the form (e1, ..., en) s.t., for each i ∈ {1, ..., n}, ei
is either a constant, a variable, or a function. We define a function E that maps
each arc to an expression from L. Let us consider some examples in Fig. 3. The
expressions E(p1, t1) = E(t1, p3) = (o, ts, pr, q) in arcs (p1, t1) and (t1, p3) spec-
ify that, when transition t1 fires, one token in p1 shall be consumed from place
p1 and transferred (without modifications) to place p3. This is how we model
processing of resources. In such firing, variables in the expression are binded
to token values, e.g., (o, ts, pr, q) = (b1, 1, 22.0, 3). As another example, let us
consider transition t6. It specifies a trade where a buy order is partially filled
(q2 out of q stocks were bought), so the order should return with its remainder
to the buy side (place p5). The expression E(t6, p5) = (o, ts, pr, q − q2) in arc
(t6, p5) makes such modification, decrementing the buy order’s stock quantity
by q2, s.t. q2 is the stock quantity of the sell order binded from place p6.

Transitions and Activity labels. We consider a function Λ, mapping each
transition to a label from a finite set A of activity labels. Thus, as shown in Fig.
3, each transition represents an activity in a trading session. Transitions t1, t2
model submission of incoming orders from participants. Transitions t3, t4 model
insertion of submitted orders in an order book side. Then, a trade may occur
between a buy order and a sell order. In particular, transition t5 (activity trade1)
models a trade where both orders were filled (all their stocks were bought/sold).
Transitions t6, t7 (activities trade2 and trade3) model the situation where only
one of the orders is filled, whereas the second one is partially filled (returning
to the order book). Finally, transitions t8 and t9 represent activities to discard
orders from the order book.

p1

t 1
submit
buy order

(o,ts,pr,q)

OB
incoming
buy orders

(o,ts,pr,q)

submitted
buy orders

t 3 new
buy order

(o,ts,pr,q)

(o,ts,pr,q)

p3
OB

Order Book
Buy Side

p2

t 2
 submit
sell order

(o2,ts2,pr2,q2)

incoming
sell orders

(o2,ts2,pr2,q2)

submitted
sell orders

t 4 new
sell order

p4
OS

Order Book
Sell Side

(o2,ts2,pr2,q2)

(o2,ts2,pr2,q2)

OSOB

p5 p6

t 6

t 5
trade1

t 7

(o2,ts2,pr2,q2)(o,ts,pr,q)

(o2,ts2,pr2,q2-q)(o,ts,pr,q-q2)

(o,ts,pr,q) (o2,ts2,pr2,q2)

(o,ts,pr,q)(o2,ts2,pr2,q2)

trade3trade2

t 8

(o,ts,pr,q)

discard
buy order

t 9discard
sell order

(o2,ts2,pr2,q2)

(b1,1,22.0,3) OS
(s2,3,21.0,3)

(s1,2,19.0,1)

filled
sell orders

(o2,ts2,pr2,0)

(o2,ts2,pr2,0) OS

p7 p8

OB

filled
buy orders

(o,ts,pr,0)

(o,ts,pr,0)

discarded
buy orders
p9

OB

p10

OS
discarded
sell orders

(o,ts,pr,0) (o2,ts2,pr2,0)

Fig. 3: CPN modeling a trading session in an order book.

Definition 1 (Colored Petri net). A colored Petri net is a 6-tuple CP =
(P, T, F, color, E , Λ), where:

– P is a finite set of places;
– T is a finite set of transitions, s.t. P ∩ T = ∅;
– F ⊆ (P×T)∪(T×P) is a finite set of directed arcs (called the flow relation);
– color : P → Σ is a place-coloring function, mapping each place to a color

in Σ, such that Σ is a finite set of colors;
– E : F → L is an arc-labeling function, mapping each arc r to an expression

of a language L, s.t. color(E(r)) = color(p) where p is a place adjacent to
an arc r;

– Λ : T → A is an activity-labeling function, mapping each transition to an
element in A, s.t. A is a finite set of activity labels, ∀t, t′ ∈ T : Λ(t) 6= Λ(t′).

We consider CPNs with the following restrictions. On the one hand, all tokens
are unique, so each place stores a set of tokens (not a multiset). Notice also
that only one token can be consumed at once from each input place (e.g., see
Fig. 3). On the other hand, for each transition t, each input place of t is of
a different color. These restrictions come to be natural in many information
systems. As exemplified with the model in Fig. 3, all tokens are unique having
distinct identifiers. Also, orders can be modified (e.g., to update their stock size),
but cannot disappear when processing them (e.g., all orders in initial places p1,
p2 must arrive to places p7, p8 if they trade all stocks, or to places p9, p10 if they
are canceled). In Section 4, we explain how these restrictions guarantee that the
conformance checking method performs a correct and efficient replay.

We now define execution semantics of our model. Let CP = (P, T, F, color, E , Λ)
be a colored Petri net. A marking M is a function, mapping each place p ∈ P to a
set of tokens M(p), according to its color. We denote by M0 an initial marking.
Markings model system states, e.g., in Fig. 3, the initial marking of the net
models the start of a simple trading session, with orders yet not submitted and
with an empty order book. A binding b of a transition t ∈ T is a function,
assigning a value b(v) to each variable v occurring in arc expressions adjacent to
t. Let be •t be a set of input places of a transition t ∈ T . Transition t is enabled
in marking M w.r.t. a binding b iff ∀p ∈ •t : b(E(p, t)) ∈ M(p), that is, each
input place of t has at least one token to be consumed. The firing of an enabled
transition t in a marking M w.r.t. to a binding b yields a new marking M ′ such
that ∀p ∈ P : M ′ = M(p)− {b(E(p, t))} ∪ {b(E(t, p))}.

3 Event Logs

In this section, we now introduce event logs, describing how they are structured.

Definition 2 (Event Log). An event log of is a finite set of traces L =
{σ1, ..., σs} where, for each i ∈ {1, ..., s}, a trace σi = 〈e1, ..., em〉 is a finite
sequence of events, s.t. m = |σi| is the trace length.

Each event e in a trace is a tuple of the form (a, {r1, ..., rk}) where a ∈ A is an
activity label, s.t. A is a finite set of activity labels, and for each j ∈ {1, ..., k},
we say that rj is a resource involved in the execution of activity a.

Table 1: Example of a trace σ in an event log L of a simple trading session.
event (e) activity (a) resources (R(e))

e1 submit buy order (b1, 1, 22.0, 3)
e2 new buy order (b1, 1, 22.0, 3)
e3 submit sell order (s1, 2, 19.0, 1)
e4 new sell order (s1, 2, 19.0, 1)
e5 submit sell order (s2, 3, 21.0, 3)
e6 new sell order (s2, 3, 21.0, 3)
e7 trade 2 (b1, 1, 22.0, 2), (s1, 2, 19.0, 0)
e8 trade 3 (b1, 1, 22.0, 0), (s2, 2, 21.0, 1)
e9 discard sell order (s2, 2, 21.0, 0)

As an example, Table 1 shows a trace σ of an event log L. Each event e in
σ indicates which activity was executed and a set of involved resources, e.g.,
in event e2, activity new buy order was executed, placing order (b1, 1, 22.0,
3) in the order book. We introduce function R(e) to return the set of resources
involved in an event e. As introduced in Section 1, since our conformance method
aims to associate observed resources in an event with tokens in a CPN model, we
assume that each resource r ∈ R(e) is a tuple belonging to some color in Σ, s.t.
Σ is the set of all possible colors in a CPN model. With slight abuse of notation,
we use color(r) to denote the color of a resource r. For example, (b1, 1, 22.0, 3)
in event e1 is a buy order, so color((b1, 1, 22.0, 3)) = OB, where OB defines the
structure of buy orders, as we exemplified in Section 2.

For each resource r = (r(1), ..., r(n)) in an event e = (a,R(e)), its tuple com-
ponents r(1), ..., r(n) represent the state of the resource after the execution of
activity a. In other words, after executing a, some attributes of r could have
been modified. However, we shall assume that the first component of r, i.e.,
r(1), is the resource identifier, which cannot be modified by any activity. For
compactness, we denote by id(r) = r(1) the identifier of r = (r(1), ..., r(n)), e.g.,
id(r1) = b1 for r1 = (b1, 1, 22.0, 3).

By using identifiers, we consider that resources can be distinguished (as we
assumed with tokens in a model). This allows us to identify the distinct objects
involved in a trace, e.g., in Table 1 we identify three distinct resources: one
buy order b1, and two sell orders s1 and s2. Also, this allows us to track how a
resource is modified. For example, let us consider the order s2, which initially had
3 stocks in event e5. In event e8 its stock size was reduced to 1 after executing a
trade, and then in event e9 its stock size went to 0 after the order was discarded.

Let r = (r(1), ..., r(n)) be a resource. For j ∈ {1, ..., n}, we have that each resource
attribute r(j) can be accessed using an attribute name. Also, all resources of the
same color share the same set of attribute names. For instance, for the color of
buy orders OB, we consider the attribute names {id, tsub, price, qty}. We define
a member access function #, such that given a resource r = (r(1), ..., r(n)) and the
name of the jth-component, it returns the value of r(j), i.e., #(r, namej) = r(j).
For simplicity, we use notation namej(r) instead of #(r, namej). For example, for
r = (b1, 1, 22.0, 3), we have that tsub(r) = 1, price(r) = 22.0, and qty(r) = 3.

4 Conformance Checking using Colored Petri Nets and
Event Logs

In this section, we present a conformance checking method for CPNs (cf. Def.
1) and event logs (cf. Def. 2). Before describing our method, we first explain the
restrictions that CPNs must satisfy to guarantee a correct and efficient replay.

Model restrictions. As described in Section 2, tokens (in all model mark-
ings) must be unique (to have distinct identifiers), and for each transition t,
all input places of t are of different colors. We illustrate the need of such re-
strictions with the next example. Consider the replay of trace σ = 〈e1, e2〉 =
〈(a, {green, red}), (b, {red})〉 on the CPN of Fig. 4(a). All places and variables
x, y in arcs are of a same color A. The CPN breaks the restrictions: there are
clones with identifiers green and red, and t has input places of the same color.

p1
t

red

green

p2

x

y p3

p4

y

x
t 1

t 2

p5

A

p6

a

b

x x

y y

c

AA

AA

red

green

A

(a) Before replay of event e1

p1
t

red

green

p2
red

green

x

y p3

p4

y

x
t 1

t 2

p5

A

p6

a

b

x x

y y

c

AA

AA

A

(b) Replay of e1 with wrong binding.

Fig. 4: Replay of trace σ on a CPN model without restrictions (a). After replaying
event e1 with wrong binding b1, event e2 = (b, {red}) cannot be replayed (b).

To replay event e1 = (a, {green, red}), we may fire t (Λ(t) = a) with binding
b1 = 〈x = green, y = red〉 or b2 = 〈x = red, y = green〉. Consider to fire t with
binding b1, yielding the marking of Fig. 4(b). Now, event e2 = (b, {red}) cannot
be replayed. The event does not showcase a real deviation, but a wrong binding
selection: if t fires with binding b2, then e2 can be replayed. Backtracking (return
to previous events and to try other bindings) is needed in such situations to assert
if a deviation has been found, or instead previous firings with wrong bindings
blocked the replay. Backtracking may be computationally expensive. Instead, let
us consider now the model of Fig. 5(a) where restrictions are complied.

p1
t

red

p2

green

x

y p3

p4

y

x
t 1

t 2

p5

A

p6

a

b

x x

y y

c

BB

AB

A

(a) Before replay of event e1

p1
t

red

p2
green

x

y p3

p4

y

x
t 1

t 2

p5

A

p6

a

b

x x

y y

c

BB

AB

A

(b) After replay of event e1.

Fig. 5: CPN model with the restrictions: the green value now is of a color B; after
replaying e1 (with the only allowed binding), e2 = (b, {red}) can be replayed.

Now, to replay e1 = (a, {green, red}), there is only one binding associated to
the observed resources in event e1, that is, b = 〈x = red, y = green〉. No other
binding may be selected as green and red values are now forced to come from
separate sources. After firing t, e2 = (b, {red}) is guaranteed to be replayed,
so backtracking is avoided. In this way, our method associates each observed
resource to a token from a specific input place (such token cannot appear in
other place), and thus only one binding can satisfy the event replay. Thus, with
these restrictions, the method guarantees a correct and less expensive replay.

Conformance Checking Method. We proceed now to explain our confor-
mance checking method, based on individual replay of each trace on top of a
CPN. As introduced before, the method seeks to fire transitions, labeled with
activities indicated in the events, and selecting input tokens according to re-
sources observed in the events. If the latter is not possible or, as we will present,
other deviations are found, the trace replay is stopped. As output, this method
returns a list of non-fitting traces (not completely replayed), and a fitness metric.
This metric indicates a degree of conformance between a CPN and an event log.

Algorithm 1: Conformance Checking using CPNs

Input: CP = (P, T, F, color, E , Λ), a CPN with an empty initial
marking;
P0 ⊆ P , a non-empty set of initial places;
L, an event log (finite set of traces);

Output: Lerror - set of non-fitting traces;
fitness - degree of conformance;

1 Lerror ← ∅; fitness← 0;
2 foreach σ ∈ L do
3 M ← ∅; M ← populateInitialPlaces(P0, R(σ));

4 foreach e = (a,R(e)) in σ do
5 t← selectTransition(a);
6 if controlFlowDeviation(•t,M,R(e)) then: add(σ,Lerror);

break;
7 b← selectBinding(t,M,R(e));
8 if ruleViolation(t,M, b) then: add(σ,Lerror); break;
9 M ← fire(t,M, b);

10 if corruptedResources(t•,M,R(e)) then: add(σ,Lerror); break;
11 endfor
12 endfor
13 fitness← 1− (|Lerror| / |L|);
14 return (Lerror, fitness);

Initial setting. Algorithm 1 presents our method whose input is a CPN with
an empty initial marking, an event log L, and a set of initial places P0 ⊆ P . At
the start of each trace replay, each place in P0 is populated with the distinct
resources in σ, according to its color (function populateInitialPlaces).

Let us consider the replay of σ in Table 1 on the CPN of Fig. 3. The CPN shows
a marking after the distinct resources in σ were placed in the initial places: buy
order b1 in p1, and sell orders s1 and s2 in p2. For each resource to insert as a
token in an initial place, we set its token values according to its first occurrence
in a trace, e.g., b1 is placed with values (b1, 1, 22.0, 3) as shown in event e1.

Control-flow deviation due to the absence of input resources. In a trace
σ, after setting the model marking according to the distinct resources in σ, we
start to replay σ on the CPN. For each event e = (a,R(e)) in σ, we try to fire
a transition t, s.t. Λ(t) = a. To fire, we check if, in a current marking M , each
resource involved in e is contained in an input place of t. Let •t be the set of
input places of t. To this aim, we check the truth value of the next formula:

∀p ∈ •t : ∃!r ∈ R(e) ∃(d1, ..., dn) ∈M(p) : id(r) = d1 ∧ color(r) = color(p)

The function controlFlowDeviation checks if the previous formula evaluates
to false. If so, the replay is stopped, e.g., some resource in R(e) is not available in
an input place. Otherwise, a binding is selected (function selectBinding), s.t.
a token (d1, ..., dn) will be consumed from each input place p, i.e., b(E(p, t)) =
(d1, ..., dn), and each token corresponds to a resource r in R(e), i.e., id(r) = d1.
For example, let us consider the replay of a trace sigma σ′1 on the CPN of Fig.
3. Let us assume that σ′1 consists of the first six events of Table 1 (submission
of buy order b1 and sell orders s1,s2) plus the two events shown below.

e7 discard sell order (s1, 2, 19.0, 0)
e8 trade 2 (b1, 1, 22.0, 2), (s1, 2, 19.0, 0)

Event e8 (trade 2 between b1 and s1) will not be replayed as s1 was discarded
in e7 (moved to place p10). Hence, s1 is not anymore available in the sell side
(place p6). Clearly, a trade cannot be executed with a canceled order. In this
way, we can detect deviating events with unavailable resources.

Rule violations. Let b be the selected binding to fire t according to the resources
in R(e). For each input place p of t, we want to check if the token to consume is
the one that should be selected (among all possible ones in p) according to some
rule. For example, in trading systems, it is mandatory to know if a priority rule
is being complied, e.g., a buy order with highest price must trade before other
buy orders. Thus, we define a marking dependent rule Φ(t) as follows:

Φ(t) ≡
∧
∀p∈•t

φp(M(p), b(E(p, t)))

where each φp(M(p), b(E(p, t))) is a local rule in place p. In Algorithm 1, we set
ruleViolation(t,M, b) ≡ ¬Φ(t). Before firing t, if a rule φp(M(p), E(p, t)) is
violated, the trace replay is stopped. Otherwise, if all rules are complied or no
rule was defined for transition t, then t fires with selected binding b. For the CPN
of Fig. 3, let us assign the rule below to transitions t5, t6, t7 (trade activities).

Φ(t) ≡ φBUY(M(p5), r1) ∧ φSELL(M(p6), r2).

φBUY(M(p5), r1) ≡ ∀(o,ts,pr,q)∈M(p5) id(r1) 6=o : (price(r1) > pr)

∨ (price(r1) = pr ∧ tsub(r1) < ts)

φSELL(M(p6), r2) ≡ ∀(o,ts,pr,q)∈M(p6) id(r2) 6=o : (price(r2) < pr)

∨ (price(r2) = pr ∧ tsub(r2) < ts)

where r1 and r2 are the buy and sell orders to consume. The local rule φBUY

for place p5 states that r1 must be the order with highest price (or with earlier
submitted time than other order with same highest price). The local rule φSELL

for place p6 is defined similarly, but stating that r2 must be the order with lowest
price. Notably, φBUY(M(p5), r1) ∧ φSELL(M(p6), r2) is a price-time priority rule,
that trading sessions must comply. For instance, let us consider the replay of
the trace in Table 1 on CPN of Fig. 3. It can be observed that this rule is being
complied when executing trades, e.g., sell order s1 is served before order s2. For
other trace, if the rule is not complied, the replay of that trace is stopped.

Checking differences between modeled and real produced resources.
We aim to exploit the fact that each event e = (a,R(e)) has information about
the new state of each resource after executing a. Recall that each resource in
R(e) could have been modified by a. Let us consider the firing of a transition
t w.r.t a selected binding b, and yielding a new marking M . Then, we proceed
to check whether each resource in real life, after executing a, was modified as
performed in the model, after firing t. Let t• be the set of output places of t.
Then, we verify if the following formula is satisfied:

∀p ∈ t• : ∃!r ∈ R(e) ∃(d1, ..., dn) ∈M(p) : r = (d1, ..., dn) = b(E(t, p))

In Algorithm 1, the function corruptedResources checks if the previous formula
evaluates to false. If so, the replay is stopped, i.e., some resource in R(e) was
not modified as indicated by the output arc expressions of t. For example, let us
consider the replay of a trace σ′2 on the CPN of Fig. 3. Let us assume that σ′2
consists of the first six events of Table 1 plus the event shown below.

e7 trade 2 (b1, 1, 22.0, 1), (s1, 2, 19.0, 0)

Before the execution of event e7, we recall that orders b1 and s1 have the fol-
lowing states: (b1, 1, 22.0, 3) and (s1, 2, 19.0, 1). After replaying event e7 in the
CPN, the token b1 is transformed to (b1, 1, 22.0, 2). As specified by the arc ex-
pression E(t6, p5), the stock size of b1, which is 3, was decremented by the stock
size s1, which is 1. Thus, the resulting stock size of b1 is 2. However, event e7
states that after trading the stock size of order b1 is 1. Evidently, the stock size
of b1 was corrupted when trading. For such a case, the trace replay is stopped.

The output of Algorithm 1 is a set of non-fitting traces Lerror, e.g., traces with
any kind of the deviations explained before. Also, the algorithm computes a
fitness metric (a ratio of completely replayed traces) as follows: fitness =
1− (|Lerror| / |L|) where Lerror ⊆ L. Since |L| ≥ |Lerror| → fitness ∈ [0, 1].

We close this section with a brief analysis on the time complexity of our method.
Whilst we do not carry out a deeper study, for example, using asymptotic nota-
tion, we do identify the crucial parameters that mainly influence the time perfor-
mance of our algorithm. Let CP = (P, T, F, color, E , Λ) be a colored Petri net
and L = {σ1, ..., σs} be an event log, as described in Definitions 1 and 2. Now,
let us examine the required operations to replay a single event e = (a,R(e)) of
a trace σ (i.e., see lines 4-10 of Algorithm 1). On the one hand, these operations
seek to fire a transition t s.t. Λ(t) = a, which it may require up to |T | transitions
to visit. On the other hand, a common term of these functions is to compare
each resource in R(e) against its corresponding token in an input place of t and,
after firing, in an output place of t (e.g., when checking availability of resources).
Both, the sets of input and output places of t are bounded by |P |. Thus, it can be
inferred that the number of steps required to replay a single event is in the order
of magnitude |T |+ (|R(e)| · |P |). With this term, it is clear to identify that the
computing time required for replaying an event is mainly affected by the number
of places |P | in a CPN and the number of observed resources |R(e)| in an event.
Afterwards, it is easy to see that this event replay routine will be repeated at
most |σ| · |L| times, s.t. ∀σ′ ∈ L : |σ| ≥ |σ′|, that is, |σ| is the maximum number
of events per trace, whereas |L| is the number of traces in the event log.

5 Implementation and Experimental Validation

In this section, we describe the implementation and evaluation of our confor-
mance method using colored Petri nets. We developed this implementation in
Python programming language. We have carried out experimental works with
both real and artificially generated event logs, which allow us to show the prac-
tical value of our method for detecting system deviations. The implementation
and all material of our experiments are available in our project repository [7].

Our solution is supported by a Python library called SNAKES [19]. This library
facilitates the prototyping of high-level classes of Petri nets, including CPNs.
This allows us to instantiate CPN models as Python objects, which can be used
as input to our method. Fig. 6 illustrates the organization of our prototypical
implementation. Users of our solution simply need to invoke a program called
the “conformance checker”. This program receives three parameters: an option
indicating the conformance method to use (e.g., replay with CPNs), an event log
stored in a log repository, and a Petri net model stored in a model repository. This
generic organization allows us to seamlessly extend our solution, incorporating
other conformance methods and models of our research.

conformance
checker

log repository

...

model repository

CPN replay

artificial log
generator

real event data
pre-processor

trading platform data

set of non-fitting traces

information on
deviations

fitness

Fig. 6: Organization of our prototypical implementation.

================ CONFORMANCE RESULTS =================
Total number of traces: 4
Non-fitting traces: 3

Fitness : 0.2500
Control-flow deviations detected: 1
Rule violations deviations detected: 1

Resource corruptions detected: 1

Deviations written in file: deviations_14081.csv
Non-fitting traces cloned to file: nf_traces_14081.csv
==

Fig. 7: Output summary resulting after the execution of our method.

Upon execution of our method, the program provides command-line messages,
indicating resulting metrics, i.e., fitness. Besides, it generates two files: a file
consisting of a set of non-fitting traces (i.e., traces that were not completely re-
played) and a file with specific information of trace deviations: in which event a
trace replay was stopped, which kind of deviation occurred, and comments that
may help engineers to localize failures. For example, Fig. 7 shows a resulting
message fragment after replaying an event log, where three traces suffered from
the kinds of deviations explained in the previous section (e.g., control-flow devia-
tion, rule violation, or resource corruption). In addition, Fig. 8 shows a fragment
of an output file specifying the deviating events in each non-fitting trace.

TRACE EVENT OCCURRED AT ACTIVITY DEVIATION ADDITIONAL INFORMATION
1111037 18-02-2019T09:13:07.581 trade2 CONTROL-FLOW resource with id: s1 is not available.

1111038 18-02-2019T09:13:07.581 trade2 RULE-VIOLATION resource with id: s2 does not have
 priority over other resources
 in the same place

1111039 18-02-2019T09:13:07.581 trade2 RESOURCE-CORRUPTED resource with id: b1 has observed
 state: ('b1',1,22.0,3) but expected
 state was: ('b1',1,22.0,2)

Fig. 8: Fragment of specific deviation diagnostics generated by our method.

Experiment with a real event log. We conducted an experimental work using
an event log from a trading platform. This log was obtained by pre-processing
data from a real trading system. The data is a recorded set of Financial Infor-
mation Exchange (FIX) protocol messages [8]. These messages were exchanged
by participants and a platform during trading sessions, so they encapsulate ac-
tivities executed by both agents and the platform. We developed a pre-processor
in Java which extracts such event log from this set of messages (also available
via [7]). The event log consists of individual traces, each of them related to a
trading session in an order book. In particular, the expected behavior in each of
these trading sessions is specified by the CPN model shown in Fig. 3.

Table 2: Event log characteristics and obtained conformance results.

Event log characteristics Conformance results

Number of pre-processed FIX Messages 552935 Number of non-fitting traces 8

Number of traces (trading sessions) 73 Fitness 0.890

Total number of events in the log 2259 Rule violations detected 1

Average number of events per trace 30 Resource corruptions detected 7

Table 2 shows characteristics of the event log. Also, it presents conformance
results, resulting from the execution of our method using the mentioned log and
the CPN of Fig 3. The table shows the number and kinds of deviations detected.
The fact that the majority of traces were completely replayed evidences that
most of the trading sessions comply with the model. Regarding the non-fitting
traces, the obtained file with information about deviations indicate that the rule
violations and resource corruptions originated in trade activities. The obtained
information may support experts to confirm whether a failure is occurring in
those activities, or instead the CPN model should be slightly refined.

Experiments with artificial event logs. In addition to the previous exper-
iment, we considered to test our method with slightly more stressed scenarios,
where system runs may be hampered by sporadic (yet critical) deviations. More
precisely, we aimed to evaluate the impact of each of the kinds of deviations
previously introduced when a system is managing a certain number of resources
(e.g., buy or sell orders). Thus, we considered an experiment where we slightly
modified the correct specification model (the CPN of Fig. 3), obtaining three
“incorrect” variants (see Table 3). These variants can be seen as instances of a
correct trading platform, but sporadically suffering from one kind of deviation.

Table 3: Description of “incorrect” variants to generate artificial event logs.

Model variant Description of the deviation that may occur

System A Control-flow deviation: with 5% of probability, activities discard buy

order or discard sell order do not cancel orders, so orders keep in
the order book (places p5 and p6 in Fig. 3), and may continue to trade.

System B Rule violation: with 2% of probability, and upon execution of activities
trade1, trade2, or trade3, this variant does not respect the priority
rule, i.e., buy/sell orders with highest/lowest prices are not served first.

System C Resource corruption: With 5% of probability, stock quantities of
buy/sell orders change to 0 when placing them in the order book (mis-
behavior of activities new buy order or new sell order of Fig. 3).

We built models of these variants (using SNAKES) to generate artificial event
logs, thereby representing observed behavior of the “incorrect” instances. Recall
that the fitness metric considered in this work relates to the number of completely
replayed traces. We used this metric to assess the probability that a system run
can be jeopardized by the occurrence of a deviation. Table 4 presents results of
this experiment. Each cell indicates the average fitness value after executing our
method, between the correct model (Fig. 3) and ten artificial event logs from
an ‘incorrect” variant, and with a certain number of resources per class (e.g.,
number of buy orders and sell orders). All event logs consist of 500 traces.

Table 4: Fitness between the CPN (Fig. 3) and logs of each incorrect variant.

Model variant 5 resources per class 25 resources per class

System A 0.6436 0.05854

System B 0.9816 0.8569

System C 0.6196 0.05852

Let us consider variants A and C. Albeit the probability of a deviation is ex-
pected to be low (i.e., 5%), the average ratio of correct traces is only above 60%.
Also, when the number of resources processed by a system inscreases, the fit-
ness value notably decreases. This is an expected pattern since when considering
more resources during a system run, the length of traces are enlarged (i.e., more
activities processing resources), and the probability of one deviation is increased.

6 Discussion and Conclusion

Conformance checking methods detect deviations in system processes using event
logs and process models. These methods use replay [18], as seen in this paper, or
alignments [2], which relate traces with model executions. A limitation of these
methods is that they only focus on control-flow, i.e., whether system’s activi-
ties comply a causal ordering. Whilst certain proposals tackle this issue with
slightly enriched models (e.g., data Petri nets) [12, 13], they use notations whose
backbone does not allow to describe transformation of objects. Tackling such
problem, we presented in this paper a conformance method using colored Petri
nets — an extension where tokens carry data of some classes (colors). Arc expres-
sions specify how tokens are transformed upon transition firings. The method
replays events on a CPN, firing transitions labeled with an event’s activity, and
choosing as input tokens the ones related to observed resources in the event.
We showed deviations that can be detected: errors due to absent resources, rule
violations or resource corruptions. We provided a prototype and experiments [7].

To make feasible the use of CPNs, we considered restrictions, e.g., tokens
must be unique and cannot be destroyed. Also, all input places of a transition
must be of different colors. We described how the latter allows us to avoid back-
tracking when replaying a trace. Interestingly, by looking the CPN in Fig. 3,
this restricted model resembles a union of workflow nets [1], a Petri net class
used in process mining. Each “lane” processing a resource class can be seen as a
workflow net, and some transitions allow interaction between these workflows.

Through the paper, we illustrated our method using trading systems [9]. In
this regard, a direction of our research focuses on the definition of formal models
to analyze different aspects of these systems [4–6]. However, it is easy to see that
the method provided in this work can be easily applied in other domains.

There are similar approaches for checking system’s compliance in the broader
field of data science, e.g., passive analysis [10] or action rules [17]. Also, event
logs with resources are similar to (multi-dimensional) sequence databases in data
mining [16]. However, such methods do not use formal models such as Petri nets.
Instead, we showed how rules to comply can be exhaustively described into a
single model, so that traces can be systematically compared against such model.

For future work, we want to enhance our method, replaying traces after one
deviation is found. When a transition cannot fire due to an absent resource, we
cannot consider injection of “missing” tokens (as proposed in [1]) since we would
violate resource uniqueness in a model. Instead, we plan to study an approach
based on “moving” tokens. Also, we plan to research how this method may relate
to another work, where we check conformance of system-agent interactions [14].

References

1. van der Aalst, W.: Process Mining: Data Science in Action. Springer (2016)
2. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B., van der Alst, W.:

Measuring Precision of Modeled Behavior. Information Systems and e-Business
Management 13(1), 37–67 (2015)

3. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer (2018)

4. Carrasquel, J.C., Lomazova, I.A.: Modelling and Validation of Trading and Multi-
Agent Systems: An Approach Based on Process Mining and Petri Nets. In: van
Dongen, B., Claes, J. (eds.) Proc. of the ICPM Doctoral Consortium. CEUR,
vol. 2432 (2019)

5. Carrasquel, J.C., Lomazova, I.A., Itkin, I.L.: Towards a Formal Modelling of Order-
driven Trading Systems using Petri Nets: A Multi-Agent Approach. In: Lomazova,
I.A., Kalenkova, A., Yavorsky, R. (eds.) Modeling and Analysis of Complex Systems
and Processes (MACSPro). CEUR, vol. 2478 (2019)

6. Carrasquel, J.C., Lomazova, I.A., Rivkin, A.: Modeling Trading Systems using
Petri Net Extensions. In: Köhler-Bussmeier, M., Kindler, E., Rölke, H. (eds.)
Int. Workshop on Petri Nets and Software Engineering (PNSE). CEUR, vol. 2651
(2020)

7. Conformance Checking with Colored Petri Nets: Project Repository (Github):
https://github.com/jcarrasquel/hse-uamc-conformance-checking

8. FIX Community - Standards: https://www.fixtrading.org/standards/
9. Harris, L.: Trading and Exchanges: Market Microstructure for Practitioners. Ox-

ford University Press (2003)
10. Itkin, I., Yavorskiy, R.: Overview of Applications of Passive Testing Techniques.

In: Lomazova, I., Kalenkova, A., Yavorsky, R. (eds.) Modeling and Analysis of
Complex Systems and Processes (MACSPro). CEUR, vol. 2478 (2019)

11. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer (2009)

12. de Leoni, M., Munoz-Gama, J., Carmona, J., van der Aalst, W.: Decompos-
ing Alignment-Based Conformance Checking of Data-Aware Process Models. In:
Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuz-
zocrea, A., Sellis, T. (eds.) On the Move to Meaningful Internet Systems (OTM).
pp. 3–20. LNCS, Springer (2014)

13. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

14. Mecheraoui, K., Carrasquel, J.C., Lomazova, I.A.: Compositional Conformance
Checking of Nested Petri Nets and Event Logs of Multi-Agent Systems. CoRR
abs/2003.07291 (2020)

15. Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE
77(4), 541–580 (1989)

16. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-Dimensional
Sequential Pattern Mining. In: Int. Conference on Information and Knowledge
Management. pp. 81–88. ACM (2001)

17. Ras, Z.W., Wyrzykowska, E., Tsay, L.: Action rules mining. In: Encyclopedia of
Data Warehousing and Mining, pp. 1–5. IGI Global (2009)

18. Rozinat, A., van der Alst, W.: Conformance Checking of Processes Based on Mon-
itoring Real Behavior. Information Systems 33(1), 64–95 (2008)

19. SNAKES - Petri net library: https://snakes.ibisc.univ-evry.fr/
20. van der Aalst, W., van Hee, K., van der Werf, J., Verdonk, M.: Auditing 2.0: Using

Process Mining to Support Tomorrow’s Auditor. Computer 43(3), 90–93 (2010)

